Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (329)
  • Open Access

    ARTICLE

    Direct Observation of the p188 Mediated Membrane Sealing with Atomic Force Microscopy

    R. C. Lee1, F. Despa1, X. Tang1, I. Titushkin2, M. Cho2

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 185-186, 2006, DOI:10.32604/mcb.2006.003.185

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Directly Derived Non-Hyper-Singular Boundary Integral Equations for Acoustic Problems, and Their Solution through Petrov-Galerkin Schemes

    Z.Y. Qian1, Z.D. Han1, S.N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.6, pp. 541-562, 2004, DOI:10.3970/cmes.2004.005.541

    Abstract Novel non-hyper-singular [i.e., only strongly-singular] boundary-integral-equations for the gradients of the acoustic velocity potential, involving only O(r−2) singularities at the surface of a 3-D body, are derived, for solving problems of acoustics governed by the Helmholtz differential equation. The gradients of the fundamental solution to the Helmholtz differential equation for the velocity potential, are used in this derivation. Several basic identities governing the fundamental solution to the Helmholtz differential equation for velocity potential, are also derived. Using these basic identities, the strongly singular integral equations for the potential and its gradients [denoted here as φ-BIE, and q-BIE, respectively], are rendered… More >

  • Open Access

    ARTICLE

    Fast Solving the Cauchy Problems of Poisson Equation in an Arbitrary Three-Dimensional Domain

    Cheinshan Liu1,2, Fajie Wang1,3,*, Wenzheng Qu4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 351-380, 2018, DOI:10.3970/cmes.2018.114.351

    Abstract In this paper we propose a novel two-stage method to solve the three-dimensional Poisson equation in an arbitrary bounded domain enclosed by a smooth boundary. The solution is decomposed into a particular solution and a homogeneous solution. In the first stage a multiple-scale polynomial method (MSPM) is used to approximate the forcing term and then the formula of Tsai et al. [Tsai, Cheng, and Chen (2009)] is used to obtain the corresponding closed-form solution for each polynomial term. Then in the second stage we use a multiple/scale/direction Trefftz method (MSDTM) to find the solution of Laplace equation, of which the… More >

  • Open Access

    ABSTRACT

    The regularized indirect algorithm in BEM for calculating values on and near boundaries

    H.B. Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 105-106, 2011, DOI:10.3970/icces.2011.020.105

    Abstract The calculation of field values and their derivatives near the domain boundary through the boundary element method (BEM) will meet the nearly singularity problem, i.e. the boundary layer effect problem. The tangential derivatives of field values on the boundary often meet an obvious deduction of calculation accuracy. An effective algorithm was proposed by Chen et al. [1,2] to treat these two problems in the same time in elastic BEM and it was recently extended to calculate the second derivative values in potential problem [3]. This algorithm is based on the regularized formulations and is now called the regularized indirect algorithm.… More >

  • Open Access

    ABSTRACT

    Direct Numerical Simulations for Colloidal Dispersions

    Ryoichi Yamamoto

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.2, pp. 37-38, 2011, DOI:10.3970/icces.2011.018.037

    Abstract We developed a unique method for direct numerical simulations (DNS) of dense colloidal dispersions [3, 5]. This method, called the smoothed profile method (SPM), enables us to compute the time evolutions of colloidal particles, ions, and host fluids simultaneously by solving Newton, advection-diffusion, and Navier-Stokes equations so that the electro- hydrodynamic couplings can be fully taken into account. We have applied the SPM successfully for simulating dynamics of various particle dispersions, including colloids in liquid crystals [1, 2], electrophoresis of charged colloids [4, 5], particle diffusion in fluids [7, 8], dispersion rheology [9, 11], tumbling chain in shear flow [10],… More >

  • Open Access

    ABSTRACT

    The Direct Coupling Method of Natural Boundary Element and Finite Element on Elastic Plane Problem in Unbounded Domain

    Zhao Huiming, Dong Zhengzhu, Chen Jiarui, Yang Min

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.18, No.1, pp. 29-30, 2011, DOI:10.3970/icces.2011.018.029

    Abstract The advantage of the coupling method of natural boundary element method(NBEM) and finite element method (FEM) is introduced firstly. Then the principle of the direct coupling method of NBEM and FEM, and its implementation, are discussed. The comparison of results between the direct coupling method and FEM proves that the direct coupling method is simple, feasible and valid in practice. More >

  • Open Access

    ABSTRACT

    A Directional Method of Particular Solution for Solving the 3D Poisson Equation

    Chunglun Kuo*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 173-173, 2019, DOI:10.32604/icces.2019.05272

    Abstract In this article, a directional method of particular solution (DMPS) is derived to solve the 3D Poisson equation in an arbitrary domain. The proposed DMPS for the 3D problems are based on the 2D particular solution. Together with the directional technique we can construct the 3D particular solution easily by introducing a series of planar directors into the 2D particular solution. The intensities of the basis functions are determined by imposing the boundary condition on the boundary collocation points. Besides, the inverse Cauchy problems are also addressed in this article. The inverse problems are highly ill-posed in nature. In order… More >

  • Open Access

    ABSTRACT

    Numerical Investigation of Cathode Water Management in Direct Methanol Fuel Cell with Micro-porous Layer

    Jinghui Jiang1, Yinshi Li1,2,*, Jiarong Liang1, Huaxing Xu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 159-159, 2019, DOI:10.32604/icces.2019.05378

    Abstract Water flooding in the cathode is considered as one of the most important factors that impede the performance of direct methanol fuel cells (DMFCs) during the operation of high current density. Therefore, it is essential to study water management of cathode in DMFC. In this work, a two-dimensional, steady-state, two-phase, mass-transport model of DMFC with micro-porous layer (MPL) was developed considering methanol crossover and water crossover processes. Emphasis is placed on investigating parameter design of cathode to relieve flooding in DMFC, further to improve cell performance. The effects of MPL parameters, including porosity and thickness, on water distribution in cathode… More >

  • Open Access

    ABSTRACT

    Direct Interval Multi-Objective Optimization Method for Uncertain Structures

    Guiping Liu*, Sheng Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.21, No.4, pp. 92-92, 2019, DOI:10.32604/icces.2019.05523

    Abstract In engineering multi-objective optimization of structures, the parameters involved in the problems are usually given deterministic values. However, due to the presence of manufacturing and measurement errors, uncertainty inevitably exists in the geometrical properties of the structure, the material properties, the boundary conditions, etc. For uncertain problems, the interval optimization methods are widely used. They describe the uncertainty by intervals which only need to find the upper and lower bounds of the uncertain parameters instead of constructing the exact probability distribution function. However, in multi-objective optimization problems, if considered all the upper and lower bounds of the objective functions as… More >

  • Open Access

    ABSTRACT

    An Investigation into Atomic Scale Forming Mechanism and Friction Characteristics in Direct Nanoimprint by Molecular Dynamics Simulation

    Chih-Wei Hsieh1, Chien-Li Wu1, Cheng-Kuo Sung1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.2, pp. 33-34, 2009, DOI:10.3970/icces.2009.013.033

    Abstract Molecular dynamics (MD) simulation has been demonstrated as a promising method to analyze formation and friction mechanisms of the nanoimprint process. Especially, it provides a useful tool for investigating critical issues that are generally difficult to be examined by the experiment because of cross talks among influential factors or attainability of direct measurement. This study utilized the friction mechanism to explore the factors that would affect the quality of mold replication in the direct nanoimprint. Those factors included mechanical properties of thin films, interaction force between mold and thin-film materials, and surface roughness of the mold, etc. First, we set… More >

Displaying 241-250 on page 25 of 329. Per Page