Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (327)
  • Open Access

    ARTICLE

    Text Extraction with Optimal Bi-LSTM

    Bahera H. Nayef1,*, Siti Norul Huda Sheikh Abdullah2, Rossilawati Sulaiman2, Ashwaq Mukred Saeed3

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3549-3567, 2023, DOI:10.32604/cmc.2023.039528

    Abstract Text extraction from images using the traditional techniques of image collecting, and pattern recognition using machine learning consume time due to the amount of extracted features from the images. Deep Neural Networks introduce effective solutions to extract text features from images using a few techniques and the ability to train large datasets of images with significant results. This study proposes using Dual Maxpooling and concatenating convolution Neural Networks (CNN) layers with the activation functions Relu and the Optimized Leaky Relu (OLRelu). The proposed method works by dividing the word image into slices that contain characters. Then pass them to deep… More >

  • Open Access

    ARTICLE

    A Secure Microgrid Data Storage Strategy with Directed Acyclic Graph Consensus Mechanism

    Jian Shang1,2,*, Runmin Guan2, Wei Wang2

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2609-2626, 2023, DOI:10.32604/iasc.2023.037694

    Abstract The wide application of intelligent terminals in microgrids has fueled the surge of data amount in recent years. In real-world scenarios, microgrids must store large amounts of data efficiently while also being able to withstand malicious cyberattacks. To meet the high hardware resource requirements, address the vulnerability to network attacks and poor reliability in the traditional centralized data storage schemes, this paper proposes a secure storage management method for microgrid data that considers node trust and directed acyclic graph (DAG) consensus mechanism. Firstly, the microgrid data storage model is designed based on the edge computing technology. The blockchain, deployed on… More >

  • Open Access

    PROCEEDINGS

    Design Sensitivity Analysis of Thin-Body Acoustic Problems Above an Infinite Impedance Plane by Using a Fast Multipole Indirect BEM

    Menghui Liang1, Changjun Zheng1,*, Yongbin Zhang1, Chuanxing Bi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09605

    Abstract This paper presents an accurate and efficient indirect boundary element method (IBEM) accelerated by the fast multipole algorithm (FMA)for the design sensitivity analysis of large-scale thin-body acoustic problems above an infinite impedance plane. The non-uniqueness issue of the IBEM in solving exterior acoustic problems is avoided by applying a hybrid combination of single- and double-layer potentials. The half-space impedance Green’s function which involves an image complex line source and is valid for both mass-like and spring-like impedance plane is employed to involve the sound-absorbing effect of the ground surface. Explicit evaluation formulations of the singular boundary integrals are derived and… More >

  • Open Access

    PROCEEDINGS

    A Fast Direct Boundary Element Method for 3D Acoustic Problems Based on Hierarchical Matrices

    Ruoyan Li1,2, Yijun Liu1,*, Wenjing Ye2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09472

    Abstract The boundary element method (BEM) for acoustic problems is a numerical method based on solving the discretized boundary integral equation (BIE) corresponding to the Helmholtz equation. A fast direct BEM for 3D acoustic problems is proposed in this paper, which is more suitable for broadband acoustic simulation of complex structures, such as in the design and analysis of acoustic metamaterials. The main idea of the fast direct solver is based on the hierarchical off-diagonal low-rank (HODLR) matrix, randomized interpolative decomposition and fast matrix inversion formula. Several numerical examples in solving both interior and exterior acoustic problems are presented in this… More >

  • Open Access

    PROCEEDINGS

    Direct FE2 Method For Concurrent Multilevel Modeling of Piezoelectric Structures

    Leilei Chen2,3, Haozhi Li3,4, Lu Meng5, Pan Chen3, Pei Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.010584

    Abstract In this paper, a Direct FE2 method is proposed to simulate the electromechanical coupling problem of inhomogeneous materials. The theoretical foundation for the proposed method, downscaling and upscaling principles, is the same as that of the FE2 method. The two-level simulation in the Direct FE2 method may be addressed in an integrative framework where macroscopic and microscopic degrees of freedom (DOFs) are related by multipoint constraints (MPCs) [1]. This critical characteristic permits simple implementation in commercial FE software, eliminating the necessity for recurrent data transfer between two scales [2-4]. The capabilities of Direct FE2 are validated using four numerical examples,… More >

  • Open Access

    ARTICLE

    Intermediary RRT*-PSO: A Multi-Directional Hybrid Fast Convergence Sampling-Based Path Planning Algorithm

    Loc Q. Huynh1, Ly V. Tran1, Phuc N. K. Phan1, Zhiqiu Yu2, Son V. T. Dao1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2281-2300, 2023, DOI:10.32604/cmc.2023.034872

    Abstract Path planning is a prevalent process that helps mobile robots find the most efficient pathway from the starting position to the goal position to avoid collisions with obstacles. In this paper, we propose a novel path planning algorithm–Intermediary RRT*-PSO-by utilizing the exploring speed advantages of Rapidly exploring Random Trees and using its solution to feed to a metaheuristic-based optimizer, Particle swarm optimization (PSO), for fine-tuning and enhancement. In Phase 1, the start and goal trees are initialized at the starting and goal positions, respectively, and the intermediary tree is initialized at a random unexplored region of the search space. The… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    PROCEEDINGS

    A Directional Fast Algorithm for Oscillatory Kernels with Curvelet-Like Functions

    Yanchuang Cao1, Jun Liu1, Dawei Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.09272

    Abstract Interactions of multiple points with oscillatory kernels are widely encountered in wave analysis. For large scale problems, its direct evaluation is prohibitive since the computational cost increases quadratically with the number of points.
    Various fast algorithms have been constructed by exploiting specific properties of the kernel function. Early fast algorithms, such as the fast multipole method (FMM) and its variants, H2-matrix, adaptive cross approximation (ACA), wavelet-based method, etc., are generally developed for kernels that are asymptotically smooth when source points and target points are well separated. For oscillatory kernels, however, the asymptotic smoothness criteria is only satisfied when the oscillation… More >

  • Open Access

    PROCEEDINGS

    High-temperature Fatigue Performance of Laser Directed Energy Deposited Ni-Based Superalloy Under Different Heat Treatment

    Zhenan Zhao1,*, Weizhu Yang2,3, Lei Li2, Shouyi Sun2, Yan Zeng2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.010342

    Abstract The hot section components are usually in service under cyclic loading in an extreme working environment with high rotational speed at high temperatures, which is prone to fatigue failure. It is reported that fatigue related failures have accounted for over 50% of all failures of hot section components. Consequently, fatigue related failure at high temperature is one of the most important factors that shortens the service life of hot section components. Ni-based superalloy GH4169, similar as Inconel 718 (IN718), is a γ′′ and γ′ precipitation strengthened alloy. For decades, GH4169 superalloy keeps being an important material in hot section components… More >

  • Open Access

    PROCEEDINGS

    Direct Numerical Simulation of Electroconvection near an Ion-Selective Membrane Under Magnetic Field

    Jinxiang Cai1, Gaojin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09833

    Abstract We study the effect of magnetic field on the electro-hydrodynamics of ion transport in a liquid electrolyte near an ion-selective membrane using direct numerical simulation. Ion transport across the ion selective membrane plays an essential role in many electro-hydrodynamic and electro-microfluidic systems. Above a critical voltage, electroconvective instability occurs near the membrane surface, causing vortical flows in liquid electrolyte which enhances the mixing of cations and anions, increases the ion transport efficiency and causes current fluctuations. When the system is under a magnetic field, the Lorentz force generated by the ion movement can significantly change the flow of electrolyte solution.… More >

Displaying 31-40 on page 4 of 327. Per Page