Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (485)
  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

  • Open Access

    ARTICLE

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

    Heping Qi, Wenyao Sun*, Yi Zhao, Xiaoyi Qian, Xingyu Jiang

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069603 - 27 December 2025

    Abstract Virtual power plant (VPP) integrates a variety of distributed renewable energy and energy storage to participate in electricity market transactions, promote the consumption of renewable energy, and improve economic efficiency. In this paper, aiming at the uncertainty of distributed wind power and photovoltaic output, considering the coupling relationship between power, carbon trading, and green card market, the optimal operation model and bidding scheme of VPP in spot market, carbon trading market, and green card market are established. On this basis, through the Shapley value and independent risk contribution theory in cooperative game theory, the quantitative… More > Graphic Abstract

    Optimal Operation of Virtual Power Plants Based on Revenue Distribution and Risk Contribution

  • Open Access

    ARTICLE

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

    Yong Li, Yuxuan Chen*, Jiahui He, Guowei He, Chenxi Dai, Jingjing Tong, Wenting Lei

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069257 - 27 December 2025

    Abstract Ensuring reliable power supply in urban distribution networks is a complex and critical task. To address the increased demand during extreme scenarios, this paper proposes an optimal dispatch strategy that considers the coordination with virtual power plants (VPPs). The proposed strategy improves system flexibility and responsiveness by optimizing the power adjustment of flexible resources. In the proposed strategy, the Gaussian Process Regression (GPR) is firstly employed to determine the adjustable range of aggregated power within the VPP, facilitating an assessment of its potential contribution to power supply support. Then, an optimal dispatch model based on More > Graphic Abstract

    Optimal Dispatch of Urban Distribution Networks Considering Virtual Power Plant Coordination under Extreme Scenarios

  • Open Access

    ARTICLE

    An Improved Variant of Multi-Population Cooperative Constrained Multi-Objective Optimization (MCCMO) for Multi-Objective Optimization Problem

    Muhammad Waqar Khan1,*, Adnan Ahmed Siddiqui1, Syed Sajjad Hussain Rizvi2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-15, 2026, DOI:10.32604/cmc.2025.070858 - 09 December 2025

    Abstract The multi-objective optimization problems, especially in constrained environments such as power distribution planning, demand robust strategies for discovering effective solutions. This work presents the improved variant of the Multi-population Cooperative Constrained Multi-Objective Optimization (MCCMO) Algorithm, termed Adaptive Diversity Preservation (ADP). This enhancement is primarily focused on the improvement of constraint handling strategies, local search integration, hybrid selection approaches, and adaptive parameter control. The improved variant was experimented on with the RWMOP50 power distribution system planning benchmark. As per the findings, the improved variant outperformed the original MCCMO across the eleven performance metrics, particularly in terms… More >

  • Open Access

    ARTICLE

    Experimental Study of Hydrogen Distribution in Natural Gas under Static Conditions

    Mengjie Wang1, Jingfa Li2,*, Bo Yu2, Nianrong Wang3, Xiaofeng Wang3, Tao Hu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3055-3072, 2025, DOI:10.32604/fdmp.2025.071675 - 31 December 2025

    Abstract The adaptation of existing natural gas pipelines for hydrogen transportation has attracted increasing attention in recent years. Yet, whether hydrogen and natural gas stratify under static conditions remains a subject of debate, and experimental evidence is still limited. This study presents an experimental investigation of the concentration distribution of hydrogen–natural gas mixtures under static conditions. Hydrogen concentration was measured using a KTL-2000M-H hydrogen analyzer, with a measurement range of 0–30% (by volume), an accuracy of 1% full scale (FS), and a resolution of 0.01%. Experiments were conducted in a 300 cm riser, filled with uniformly… More >

  • Open Access

    ARTICLE

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

    Dong Hu1,2, Lingxing Hu3, Facheng Qiu3,*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1865-1882, 2025, DOI:10.32604/fhmt.2025.073409 - 31 December 2025

    Abstract With the acceleration of industrialization and urbanization, ammonia nitrogen pollution in water bodies has become increasingly severe, making the development of efficient and low-consumption wastewater treatment technologies highly significant. This study employs three-dimensional computational fluid dynamics (CFD) to investigate the cavitation mechanisms and flow field characteristics in a novel jet impingement-negative pressure ammonia removal reactor. The simulation, validated by experimental pressure data with a high degree of consistency, utilizes the Mixture model, the Realizable k-ε turbulence model, and the Schnerr-Sauer cavitation model. The results demonstrate that the flow velocity undergoes a substantial acceleration within the… More > Graphic Abstract

    Cavitation Effects and Flow Field Analysis of a Jet Impingement-Negative Pressure Ammonia Removal Reactor

  • Open Access

    ARTICLE

    Numerical Analysis of Non-Uniform Pollutant Distribution in an Internal Space of Tank and the Efficacy of an Active Purification Strategy

    Xiaolong Li, Hui Chen, Yingwen Liu, Peng Yang*

    Frontiers in Heat and Mass Transfer, Vol.23, No.6, pp. 1767-1788, 2025, DOI:10.32604/fhmt.2025.070537 - 31 December 2025

    Abstract Hazardous gas intrusion in tightly sealed and geometrically complex confined spaces, such as armored tanks, poses a critical threat to occupant health. The intricate internal structure of these systems may lead to non-intuitive pollutant transport pathways. However, the spatial and temporal evolution of these structures, as well as the intrinsic mechanisms of the purification systems, remain poorly elucidated. In this study, a high-fidelity, transient three-dimensional computational fluid dynamics (CFD) model was developed to simulate the leakage and dispersion of carbon monoxide (CO) and nitrogen dioxide (NO2) using the RNG k-ε turbulence model. Scenarios with and without… More > Graphic Abstract

    Numerical Analysis of Non-Uniform Pollutant Distribution in an Internal Space of Tank and the Efficacy of an Active Purification Strategy

  • Open Access

    ARTICLE

    AI-Based Power Distribution Optimization in Hyperscale Data Centers

    Chirag Devendrakumar Parikh*

    Journal on Artificial Intelligence, Vol.7, pp. 571-584, 2025, DOI:10.32604/jai.2025.073765 - 01 December 2025

    Abstract With the increasing complexity and scale of hyperscale data centers, the requirement for intelligent, real-time power delivery has never been more critical to ensure uptime, energy efficiency, and sustainability. Those techniques are typically static, reactive (since CPU and workload scaling is applied to performance events that occur after a request has been submitted, and is thus can be classified as a reactive response.), and require manual operation, and cannot cope with the dynamic nature of the workloads, the distributed architectures as well as the non-uniform energy sources in today’s data centers. In this paper, we… More >

  • Open Access

    ARTICLE

    Fuel-Minimization-Oriented Power Distribution Strategy of Diesel Power Generation-Energy Storage Parallel Power Supply Architecture

    Jian Wang1, Hui Qi1, Feilong Jiang2,*, Biao Jiang3, Tiankui Sun4, Lingyi Ji1, Yajun Zhao2, Feifei Bu2

    Energy Engineering, Vol.122, No.12, pp. 4873-4897, 2025, DOI:10.32604/ee.2025.069071 - 27 November 2025

    Abstract To enhance power supply reliability and reduce customer outage time, Mobile Emergency Power Supply Vehicles (MEPSVs), including Mobile Diesel Generator Vehicles (MDGVs) and Mobile Energy Storage Vehicles (MESVs), have become indispensable sources for grid maintenance and disaster response. However, in practice, relying solely on MESVs is constrained by battery capacity, making it difficult to meet long-duration power demands. Conversely, using only MDGVs often results in low efficiency and high fuel consumption under fluctuating load conditions, posing challenges to achieving economical and efficient power supply. To address these issues, this paper investigates the parallel power supply… More >

  • Open Access

    ARTICLE

    Single-Phase Grounding Fault Identification in Distribution Networks with Distributed Generation Considering Class Imbalance across Different Network Topologies

    Lei Han1,*, Wanyu Ye1, Chunfang Liu2, Shihua Huang1, Chun Chen3, Luxin Zhan3, Siyuan Liang3

    Energy Engineering, Vol.122, No.12, pp. 4947-4969, 2025, DOI:10.32604/ee.2025.069040 - 27 November 2025

    Abstract In contemporary medium-voltage distribution networks heavily penetrated by distributed energy resources (DERs), the harmonic components injected by power-electronic interfacing converters, together with the inherently intermittent output of renewable generation, distort the zero-sequence current and continuously reshape its frequency spectrum. As a result, single-line-to-ground (SLG) faults exhibit a pronounced, strongly non-stationary behaviour that varies with operating point, load mix and DER dispatch. Under such circumstances the performance of traditional rule-based algorithms—or methods that rely solely on steady-state frequency-domain indicators—degrades sharply, and they no longer satisfy the accuracy and universality required by practical protection systems. To overcome… More >

Displaying 1-10 on page 1 of 485. Per Page