Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,375)
  • Open Access

    ARTICLE

    The Boundary Element Method for Ordinary State-Based Peridynamics

    Xue Liang1,2, Linjuan Wang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2807-2834, 2024, DOI:10.32604/cmes.2024.046770

    Abstract The peridynamics (PD), as a promising nonlocal continuum mechanics theory, shines in solving discontinuous problems. Up to now, various numerical methods, such as the peridynamic mesh-free particle method (PD-MPM), peridynamic finite element method (PD-FEM), and peridynamic boundary element method (PD-BEM), have been proposed. PD-BEM, in particular, outperforms other methods by eliminating spurious boundary softening, efficiently handling infinite problems, and ensuring high computational accuracy. However, the existing PD-BEM is constructed exclusively for bond-based peridynamics (BBPD) with fixed Poisson’s ratio, limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems. In this paper, we address these limitations by… More >

  • Open Access

    ARTICLE

    Dynamic Response Impact of Vehicle Braking on Simply Supported Beam Bridges with Corrugated Steel Webs Based on Vehicle-Bridge Coupled Vibration Analysis

    Yan Wang*, Siwen Li, Na Wei

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3467-3493, 2024, DOI:10.32604/cmes.2024.046454

    Abstract A novel approach for analyzing coupled vibrations between vehicles and bridges is presented, taking into account spatiotemporal effects and mechanical phenomena resulting from vehicle braking. Efficient modeling and solution of bridge vibrations induced by vehicle deceleration are realized using this method. The method’s validity and reliability are substantiated through numerical examples. A simply supported beam bridge with a corrugated steel web is taken as an example and the effects of parameters such as the initial vehicle speed, braking acceleration, braking location, and road surface roughness on the mid-span displacement and impact factor of the bridge are analyzed. The results show… More >

  • Open Access

    ARTICLE

    Distributed Dynamic Load in Structural Dynamics by the Impulse-Based Force Estimation Algorithm

    Yuantian Qin1,2, Yucheng Zhang1,*, Vadim V. Silberschmidt2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2865-2891, 2024, DOI:10.32604/cmes.2024.046113

    Abstract This paper proposes a novel approach for identifying distributed dynamic loads in the time domain. Using polynomial and modal analysis, the load is transformed into modal space for coefficient identification. This allows the distributed dynamic load with a two-dimensional form in terms of time and space to be simultaneously identified in the form of modal force, thereby achieving dimensionality reduction. The Impulse-based Force Estimation Algorithm is proposed to identify dynamic loads in the time domain. Firstly, the algorithm establishes a recursion scheme based on convolution integral, enabling it to identify loads with a long history and rapidly changing forms over… More >

  • Open Access

    ARTICLE

    Sub-Homogeneous Peridynamic Model for Fracture and Failure Analysis of Roadway Surrounding Rock

    Shijun Zhao1, Qing Zhang2, Yusong Miao1, Weizhao Zhang3, Xinbo Zhao1, Wei Xu1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3167-3187, 2024, DOI:10.32604/cmes.2023.045015

    Abstract The surrounding rock of roadways exhibits intricate characteristics of discontinuity and heterogeneity. To address these complexities, this study employs non-local Peridynamics (PD) theory and reconstructs the kernel function to represent accurately the spatial decline of long-range force. Additionally, modifications to the traditional bond-based PD model are made. By considering the micro-structure of coal-rock materials within a uniform discrete model, heterogeneity characterized by bond random pre-breaking is introduced. This approach facilitates the proposal of a novel model capable of handling the random distribution characteristics of material heterogeneity, rendering the PD model suitable for analyzing the deformation and failure of heterogeneous layered… More >

  • Open Access

    ARTICLE

    A Study on the Transmission Dynamics of the Omicron Variant of COVID-19 Using Nonlinear Mathematical Models

    S. Dickson1, S. Padmasekaran1, Pushpendra Kumar2,*, Kottakkaran Sooppy Nisar3, Hamidreza Marasi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2265-2287, 2024, DOI:10.32604/cmes.2023.030286

    Abstract This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models, considering the delay in converting susceptible individuals into infected ones. The significant delays eventually resulted in the pandemic’s containment. To ensure the safety of the host population, this concept integrates quarantine and the COVID-19 vaccine. We investigate the stability of the proposed models. The fundamental reproduction number influences stability conditions. According to our findings, asymptomatic cases considerably impact the prevalence of Omicron infection in the community. The real data of the Omicron variant from Chennai, Tamil Nadu, India, is used to validate the… More >

  • Open Access

    ARTICLE

    Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks

    Shiyan Zhang1,*, Ruohan Xu2, Zhangbo Xu3, Cenhua Yu1, Yuyang Jiang1, Yuting Zhao4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2287-2308, 2024, DOI:10.32604/cmc.2023.046550

    Abstract The 6th generation mobile networks (6G) network is a kind of multi-network interconnection and multi-scenario coexistence network, where multiple network domains break the original fixed boundaries to form connections and convergence. In this paper, with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness, this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration. Due to the conflict between the utility of different flows, the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions. Regarding the tradeoff between… More >

  • Open Access

    ARTICLE

    A Bibliometric Analysis Unveils Valuable Insights into the Past, Present, and Future Dynamics of Plant Acclimation to Temperature

    Yong Cui, Yongju Zhao, Shengnan Ouyang, Changchang Shao, Liangliang Li, Honglang Duan*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 291-312, 2024, DOI:10.32604/phyton.2024.047281

    Abstract Plant temperature acclimation is closely related to maintaining a positive carbon gain under future climate change. However, no systematic summary of the field has been conducted. Based on this, we analyzed data on plant temperature acclimation from the Web of Science Core Collection database using bibliometric software R, RStudio and VOSviewer. Our study demonstrated that a stabilized upward trajectory was noted in publications (298 papers) from 1986 to 2011, followed by a swift growth (373 papers) from 2012 to 2022. The most impactful journals were Plant Cell and Environment, boasting the greatest count of worldwide citations and articles, the highest… More >

  • Open Access

    ARTICLE

    Electric Vehicle Charging Load Optimization Strategy Based on Dynamic Time-of-Use Tariff

    Shuwei Zhong, Yanbo Che*, Shangyuan Zhang

    Energy Engineering, Vol.121, No.3, pp. 603-618, 2024, DOI:10.32604/ee.2023.044667

    Abstract Electric vehicle (EV) is an ideal solution to resolve the carbon emission issue and the fossil fuels scarcity problem in the future. However, a large number of EVs will be concentrated on charging during the valley hours leading to new load peaks under the guidance of static time-of-use tariff. Therefore, this paper proposes a dynamic time-of-use tariff mechanism, which redefines the peak and valley time periods according to the predicted loads using the fuzzy C-mean (FCM) clustering algorithm, and then dynamically adjusts the peak and valley tariffs according to the actual load of each time period. Based on the proposed… More >

  • Open Access

    ARTICLE

    A Predictive Energy Management Strategies for Mining Dump Trucks

    Yixuan Yu, Yulin Wang*, Qingcheng Li, Bowen Jiao

    Energy Engineering, Vol.121, No.3, pp. 769-788, 2024, DOI:10.32604/ee.2023.044042

    Abstract The plug-in hybrid vehicles (PHEV) technology can effectively address the issues of poor dynamics and higher energy consumption commonly found in traditional mining dump trucks. Meanwhile, plug-in hybrid electric trucks can achieve excellent fuel economy through efficient energy management strategies (EMS). Therefore, a series hybrid system is constructed based on a 100-ton mining dump truck in this paper. And inspired by the dynamic programming (DP) algorithm, a predictive equivalent consumption minimization strategy (P-ECMS) based on the DP optimization result is proposed. Based on the optimal control manifold and the SOC reference trajectory obtained by the DP algorithm, the P-ECMS strategy… More >

  • Open Access

    ARTICLE

    Prediction and Analysis of Vehicle Interior Road Noise Based on Mechanism and Data Series Modeling

    Jian Pang1,3, Tingting Mao2, Wenyu Jia3, Xiaoli Jia3,*, Peisong Dai2, Haibo Huang1,2,*

    Sound & Vibration, Vol.58, pp. 59-80, 2024, DOI:10.32604/sv.2024.046247

    Abstract Currently, the inexorable trend toward the electrification of automobiles has heightened the prominence of road noise within overall vehicle noise. Consequently, an in-depth investigation into automobile road noise holds substantial practical importance. Previous research endeavors have predominantly centered on the formulation of mechanism models and data-driven models. While mechanism models offer robust controllability, their application encounters challenges in intricate analyses of vehicle body acoustic-vibration coupling, and the effective utilization of accumulated data remains elusive. In contrast, data-driven models exhibit efficient modeling capabilities and can assimilate conceptual vehicle knowledge, but they impose stringent requirements on both data quality and quantity. In… More >

Displaying 51-60 on page 6 of 1375. Per Page