Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (157)
  • Open Access

    ARTICLE

    Deep Neural Network Based Detection and Segmentation of Ships for Maritime Surveillance

    Kyamelia Roy1, Sheli Sinha Chaudhuri1, Sayan Pramanik2, Soumen Banerjee2,*

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 647-662, 2023, DOI:10.32604/csse.2023.024997 - 01 June 2022

    Abstract In recent years, computer vision finds wide applications in maritime surveillance with its sophisticated algorithms and advanced architecture. Automatic ship detection with computer vision techniques provide an efficient means to monitor as well as track ships in water bodies. Waterways being an important medium of transport require continuous monitoring for protection of national security. The remote sensing satellite images of ships in harbours and water bodies are the image data that aid the neural network models to localize ships and to facilitate early identification of possible threats at sea. This paper proposes a deep learning… More >

  • Open Access

    ARTICLE

    Image Captioning Using Detectors and Swarm Based Learning Approach for Word Embedding Vectors

    B. Lalitha1,*, V. Gomathi2

    Computer Systems Science and Engineering, Vol.44, No.1, pp. 173-189, 2023, DOI:10.32604/csse.2023.024118 - 01 June 2022

    Abstract IC (Image Captioning) is a crucial part of Visual Data Processing and aims at understanding for providing captions that verbalize an image’s important elements. However, in existing works, because of the complexity in images, neglecting major relation between the object in an image, poor quality image, labelling it remains a big problem for researchers. Hence, the main objective of this work attempts to overcome these challenges by proposing a novel framework for IC. So in this research work the main contribution deals with the framework consists of three phases that is image understanding, textual understanding and… More >

  • Open Access

    ARTICLE

    A New Intrusion Detection Algorithm AE-3WD for Industrial Control Network

    Yongzhong Li1,2,*, Cong Li1, Yuheng Li3, Shipeng Zhang2

    Journal of New Media, Vol.4, No.4, pp. 205-217, 2022, DOI:10.32604/jnm.2022.034778 - 12 December 2022

    Abstract In this paper, we propose a intrusion detection algorithm based on auto-encoder and three-way decisions (AE-3WD) for industrial control networks, aiming at the security problem of industrial control network. The ideology of deep learning is similar to the idea of intrusion detection. Deep learning is a kind of intelligent algorithm and has the ability of automatically learning. It uses self-learning to enhance the experience and dynamic classification capabilities. We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning, a denoising AutoEncoder and three-way decisions intrusion detection method More >

  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Generator with Stacked Noise Reduction Autoencoder Based on Group Normalization

    Sihua Wang1,2, Wenhui Zhang1,2,*, Gaofei Zheng1,2, Xujie Li1,2, Yougeng Zhao1,2

    Energy Engineering, Vol.119, No.6, pp. 2431-2445, 2022, DOI:10.32604/ee.2022.020779 - 14 September 2022

    Abstract In order to improve the condition monitoring and fault diagnosis of wind turbines, a stacked noise reduction autoencoding network based on group normalization is proposed in this paper. The network is based on SCADA data of wind turbine operation, firstly, the group normalization (GN) algorithm is added to solve the problems of stack noise reduction autoencoding network training and slow convergence speed, and the RMSProp algorithm is used to update the weight and the bias of the autoenccoder, which further optimizes the problem that the loss function swings too much during the update process. Finally, More >

  • Open Access

    ARTICLE

    Feature Selection with Stacked Autoencoder Based Intrusion Detection in Drones Environment

    Heba G. Mohamed1, Saud S. Alotaibi2, Majdy M. Eltahir3, Heba Mohsen4, Manar Ahmed Hamza5,*, Abu Sarwar Zamani5, Ishfaq Yaseen5, Abdelwahed Motwakel5

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5441-5458, 2022, DOI:10.32604/cmc.2022.031887 - 28 July 2022

    Abstract The Internet of Drones (IoD) offers synchronized access to organized airspace for Unmanned Aerial Vehicles (known as drones). The availability of inexpensive sensors, processors, and wireless communication makes it possible in real time applications. As several applications comprise IoD in real time environment, significant interest has been received by research communications. Since IoD operates in wireless environment, it is needed to design effective intrusion detection system (IDS) to resolve security issues in the IoD environment. This article introduces a metaheuristics feature selection with optimal stacked autoencoder based intrusion detection (MFSOSAE-ID) in the IoD environment. The… More >

  • Open Access

    ARTICLE

    Swarm Optimization and Machine Learning for Android Malware Detection

    K. Santosh Jhansi1,2,*, P. Ravi Kiran Varma2, Sujata Chakravarty3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6327-6345, 2022, DOI:10.32604/cmc.2022.030878 - 28 July 2022

    Abstract Malware Security Intelligence constitutes the analysis of applications and their associated metadata for possible security threats. Application Programming Interfaces (API) calls contain valuable information that can help with malware identification. The malware analysis with reduced feature space helps for the efficient identification of malware. The goal of this research is to find the most informative features of API calls to improve the android malware detection accuracy. Three swarm optimization methods, viz., Ant Lion Optimization (ALO), Cuckoo Search Optimization (CSO), and Firefly Optimization (FO) are applied to API calls using auto-encoders for identification of most influential More >

  • Open Access

    ARTICLE

    Residual Autoencoder Deep Neural Network for Electrical Capacitance Tomography

    Wael Deabes1,2,*, Kheir Eddine Bouazza1,3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6307-6326, 2022, DOI:10.32604/cmc.2022.030420 - 28 July 2022

    Abstract Great achievements have been made during the last decades in the field of Electrical Capacitance Tomography (ECT) image reconstruction. However, there is still a need to make these image reconstruction results faster and of better quality. Recently, Deep Learning (DL) is flourishing and is adopted in many fields. The DL is very good at dealing with complex nonlinear functions and it is built using several series of Artificial Neural Networks (ANNs). An ECT image reconstruction model using DNN is proposed in this paper. The proposed model mainly uses Residual Autoencoder called (ECT_ResAE). A large-scale dataset… More >

  • Open Access

    ARTICLE

    Optimal Deep Canonically Correlated Autoencoder-Enabled Prediction Model for Customer Churn Prediction

    Olfat M. Mirza1, G. Jose Moses2, R. Rajender3, E. Laxmi Lydia4, Seifedine Kadry5, Cheadchai Me-Ead6, Orawit Thinnukool7,*

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3757-3769, 2022, DOI:10.32604/cmc.2022.030428 - 16 June 2022

    Abstract Presently, customer retention is essential for reducing customer churn in telecommunication industry. Customer churn prediction (CCP) is important to predict the possibility of customer retention in the quality of services. Since risks of customer churn also get essential, the rise of machine learning (ML) models can be employed to investigate the characteristics of customer behavior. Besides, deep learning (DL) models help in prediction of the customer behavior based characteristic data. Since the DL models necessitate hyperparameter modelling and effort, the process is difficult for research communities and business people. In this view, this study designs More >

  • Open Access

    ARTICLE

    Enhancing the Effectiveness of Trimethylchlorosilane Purification Process Monitoring with Variational Autoencoder

    Jinfu Wang1, Shunyi Zhao1,*, Fei Liu1, Zhenyi Ma2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 531-552, 2022, DOI:10.32604/cmes.2022.019521 - 15 June 2022

    Abstract In modern industry, process monitoring plays a significant role in improving the quality of process conduct. With the higher dimensional of the industrial data, the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database. Nevertheless, these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices, especially the T2 on them. Variational AutoEncoders (VAE), an unsupervised deep learning algorithm using the hierarchy study method, has the ability to make the latent variables follow the Gaussian More >

  • Open Access

    ARTICLE

    Criss-Cross Attention Based Auto Encoder for Video Anomaly Event Detection

    Jiaqi Wang1, Jie Zhang2, Genlin Ji2,*, Bo Sheng3

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1629-1642, 2022, DOI:10.32604/iasc.2022.029535 - 25 May 2022

    Abstract The surveillance applications generate enormous video data and present challenges to video analysis for huge human labor cost. Reconstruction-based convolutional autoencoders have achieved great success in video anomaly detection for their ability of automatically detecting abnormal event. The approaches learn normal patterns only with the normal data in an unsupervised way due to the difficulty of collecting anomaly samples and obtaining anomaly annotations. But convolutional autoencoders have limitations in global feature extraction for the local receptive field of convolutional kernels. What is more, 2-dimensional convolution lacks the capability of capturing temporal information while videos change… More >

Displaying 91-100 on page 10 of 157. Per Page