Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (137)
  • Open Access

    ARTICLE

    FREPD: A Robust Federated Learning Framework on Variational Autoencoder

    Zhipin Gu1, Liangzhong He2, Peiyan Li1, Peng Sun3, Jiangyong Shi1, Yuexiang Yang1,*

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 307-320, 2021, DOI:10.32604/csse.2021.017969

    Abstract Federated learning is an ideal solution to the limitation of not preserving the users’ privacy information in edge computing. In federated learning, the cloud aggregates local model updates from the devices to generate a global model. To protect devices’ privacy, the cloud is designed to have no visibility into how these updates are generated, making detecting and defending malicious model updates a challenging task. Unlike existing works that struggle to tolerate adversarial attacks, the paper manages to exclude malicious updates from the global model’s aggregation. This paper focuses on Byzantine attack and backdoor attack in the federated learning setting. We… More >

  • Open Access

    ARTICLE

    AttEF: Convolutional LSTM Encoder-Forecaster with Attention Module for Precipitation Nowcasting

    Wei Fang1,2,*, Lin Pang1, Weinan Yi1, Victor S. Sheng3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 453-466, 2021, DOI:10.32604/iasc.2021.016589

    Abstract Precipitation nowcasting has become an essential technology underlying various public services ranging from weather advisories to citywide rainfall alerts. The main challenge facing many algorithms is the high non-linearity and temporal-spatial complexity of the radar image. Convolutional Long Short-Term Memory (ConvLSTM) is appropriate for modeling spatiotemporal variations as it integrates the convolution operator into recurrent state transition functions. However, the technical characteristic of encoding the input sequence into a fixed-size vector cannot guarantee that ConvLSTM maintains adequate sequence representations in the information flow, which affects the performance of the task. In this paper, we propose Attention ConvLSTM Encoder-Forecaster(AttEF) which allows… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in the decoder part. The number… More >

  • Open Access

    ARTICLE

    Multi-Layer Reconstruction Errors Autoencoding and Density Estimate for Network Anomaly Detection

    Ruikun Li1,*, Yun Li2, Wen He1,3, Lirong Chen1, Jianchao Luo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.1, pp. 381-398, 2021, DOI:10.32604/cmes.2021.016264

    Abstract Anomaly detection is an important method for intrusion detection. In recent years, unsupervised methods have been widely researched because they do not require labeling. For example, a nonlinear autoencoder can use reconstruction errors to attain the discrimination threshold. This method is not effective when the model complexity is high or the data contains noise. The method for detecting the density of compressed features in a hidden layer can be used to reduce the influence of noise on the selection of the threshold because the density of abnormal data in hidden layers is smaller than normal data. However, compressed features may… More >

  • Open Access

    ARTICLE

    Cyclic Autoencoder for Multimodal Data Alignment Using Custom Datasets

    Zhenyu Tang1, Jin Liu1,*, Chao Yu1, Y. Ken Wang2

    Computer Systems Science and Engineering, Vol.39, No.1, pp. 37-54, 2021, DOI:10.32604/csse.2021.017230

    Abstract The subtitle recognition under multimodal data fusion in this paper aims to recognize text lines from image and audio data. Most existing multimodal fusion methods tend to be associated with pre-fusion as well as post-fusion, which is not reasonable and difficult to interpret. We believe that fusing images and audio before the decision layer, i.e., intermediate fusion, to take advantage of the complementary multimodal data, will benefit text line recognition. To this end, we propose: (i) a novel cyclic autoencoder based on convolutional neural network. The feature dimensions of the two modal data are aligned under the premise of stabilizing… More >

  • Open Access

    ARTICLE

    A Secure Intrusion Detection System in Cyberphysical Systems Using a Parameter-Tuned Deep-Stacked Autoencoder

    Nojood O. Aljehane*

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3915-3929, 2021, DOI:10.32604/cmc.2021.017905

    Abstract Cyber physical systems (CPSs) are a networked system of cyber (computation, communication) and physical (sensors, actuators) elements that interact in a feedback loop with the assistance of human interference. Generally, CPSs authorize critical infrastructures and are considered to be important in the daily lives of humans because they form the basis of future smart devices. Increased utilization of CPSs, however, poses many threats, which may be of major significance for users. Such security issues in CPSs represent a global issue; therefore, developing a robust, secure, and effective CPS is currently a hot research topic. To resolve this issue, an intrusion… More >

  • Open Access

    ARTICLE

    Enhanced Deep Autoencoder Based Feature Representation Learning for Intelligent Intrusion Detection System

    Thavavel Vaiyapuri*, Adel Binbusayyis

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3271-3288, 2021, DOI:10.32604/cmc.2021.017665

    Abstract In the era of Big data, learning discriminant feature representation from network traffic is identified has as an invariably essential task for improving the detection ability of an intrusion detection system (IDS). Owing to the lack of accurately labeled network traffic data, many unsupervised feature representation learning models have been proposed with state-of-the-art performance. Yet, these models fail to consider the classification error while learning the feature representation. Intuitively, the learnt feature representation may degrade the performance of the classification task. For the first time in the field of intrusion detection, this paper proposes an unsupervised IDS model leveraging the… More >

  • Open Access

    ARTICLE

    Encoder-Decoder Based Multi-Feature Fusion Model for Image Caption Generation

    Mingyang Duan, Jin Liu*, Shiqi Lv

    Journal on Big Data, Vol.3, No.2, pp. 77-83, 2021, DOI:10.32604/jbd.2021.016674

    Abstract Image caption generation is an essential task in computer vision and image understanding. Contemporary image caption generation models usually use the encoder-decoder model as the underlying network structure. However, in the traditional Encoder-Decoder architectures, only the global features of the images are extracted, while the local information of the images is not well utilized. This paper proposed an Encoder-Decoder model based on fused features and a novel mechanism for correcting the generated caption text. We use VGG16 and Faster R-CNN to extract global and local features in the encoder first. Then, we train the bidirectional LSTM network with the fused… More >

  • Open Access

    ARTICLE

    Deep Learning Enabled Autoencoder Architecture for Collaborative Filtering Recommendation in IoT Environment

    Thavavel Vaiyapuri*

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 487-503, 2021, DOI:10.32604/cmc.2021.015998

    Abstract The era of the Internet of things (IoT) has marked a continued exploration of applications and services that can make people’s lives more convenient than ever before. However, the exploration of IoT services also means that people face unprecedented difficulties in spontaneously selecting the most appropriate services. Thus, there is a paramount need for a recommendation system that can help improve the experience of the users of IoT services to ensure the best quality of service. Most of the existing techniques—including collaborative filtering (CF), which is most widely adopted when building recommendation systems—suffer from rating sparsity and cold-start problems, preventing… More >

  • Open Access

    ARTICLE

    Building Graduate Salary Grading Prediction Model Based on Deep Learning

    Jong-Yih Kuo*, Hui-Chi Lin, Chien-Hung Liu

    Intelligent Automation & Soft Computing, Vol.27, No.1, pp. 53-68, 2021, DOI:10.32604/iasc.2021.014437

    Abstract Predicting salary trends of students after employment is vital for helping students to develop their career plans. Particularly, salary is not only considered employment information for students to pursue jobs, but also serves as an important indicator for measuring employability and competitiveness of graduates. This paper considers salary prediction as an ordinal regression problem and uses deep learning techniques to build a salary prediction model for determining the relative ordering between different salary grades. Specifically, to solve this problem, the model uses students’ personal information, grades, and family data as input features and employs a multi-output deep neural network to… More >

Displaying 111-120 on page 12 of 137. Per Page