Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (154)
  • Open Access

    ARTICLE

    Convolutional Neural Network Auto Encoder Channel Estimation Algorithm in MIMO-OFDM System

    I. Kalphana1,*, T. Kesavamurthy2

    Computer Systems Science and Engineering, Vol.41, No.1, pp. 171-185, 2022, DOI:10.32604/csse.2022.019799 - 08 October 2021

    Abstract Higher transmission rate is one of the technological features of prominently used wireless communication namely Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO–OFDM). One among an effective solution for channel estimation in wireless communication system, specifically in different environments is Deep Learning (DL) method. This research greatly utilizes channel estimator on the basis of Convolutional Neural Network Auto Encoder (CNNAE) classifier for MIMO-OFDM systems. A CNNAE classifier is one among Deep Learning (DL) algorithm, in which video signal is fed as input by allotting significant learnable weights and biases in various aspects/objects for video signal More >

  • Open Access

    ARTICLE

    Arrhythmia and Disease Classification Based on Deep Learning Techniques

    Ramya G. Franklin1,*, B. Muthukumar2

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 835-851, 2022, DOI:10.32604/iasc.2022.019877 - 22 September 2021

    Abstract Electrocardiography (ECG) is a method for monitoring the human heart’s electrical activity. ECG signal is often used by clinical experts in the collected time arrangement for the evaluation of any rhythmic circumstances of a topic. The research was carried to make the assignment computerized by displaying the problem with encoder-decoder methods, by using misfortune appropriation to predict standard or anomalous information. The two Convolutional Neural Networks (CNNs) and the Long Short-Term Memory (LSTM) fully connected layer (FCL) have shown improved levels over deep learning networks (DLNs) across a wide range of applications such as speech… More >

  • Open Access

    ARTICLE

    Deep Learning Based Stacked Sparse Autoencoder for PAPR Reduction in OFDM Systems

    A. Jayamathi1, T. Jayasankar2,*

    Intelligent Automation & Soft Computing, Vol.31, No.1, pp. 311-324, 2022, DOI:10.32604/iasc.2022.019473 - 03 September 2021

    Abstract Orthogonal frequency division multiplexing is one of the efficient and flexible modulation techniques, and which is considered as the central part of many wired and wireless standards. Orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-output (MIMO) achieves maximum spectral efficiency and data rates for wireless mobile communication systems. Though it offers better quality of services, high peak-to-average power ratio (PAPR) is the major issue that needs to be resolved in the MIMO-OFDM system. Earlier studies have addressed the high PAPR of OFDM system using clipping, coding, selected mapping, tone injection, peak windowing, etc. Recently, deep… More >

  • Open Access

    ARTICLE

    A Novel Named Entity Recognition Scheme for Steel E-Commerce Platforms Using a Lite BERT

    Maojian Chen1,2,3, Xiong Luo1,2,3,*, Hailun Shen4, Ziyang Huang4, Qiaojuan Peng1,2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.129, No.1, pp. 47-63, 2021, DOI:10.32604/cmes.2021.017491 - 24 August 2021

    Abstract In the era of big data, E-commerce plays an increasingly important role, and steel E-commerce certainly occupies a positive position. However, it is very difficult to choose satisfactory steel raw materials from diverse steel commodities online on steel E-commerce platforms in the purchase of staffs. In order to improve the efficiency of purchasers searching for commodities on the steel E-commerce platforms, we propose a novel deep learning-based loss function for named entity recognition (NER). Considering the impacts of small sample and imbalanced data, in our NER scheme, the focal loss, the label smoothing, and the… More >

  • Open Access

    ARTICLE

    Automatic Detection of COVID-19 Using a Stacked Denoising Convolutional Autoencoder

    Habib Dhahri1,2,*, Besma Rabhi3, Slaheddine Chelbi4, Omar Almutiry1, Awais Mahmood1, Adel M. Alimi3

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3259-3274, 2021, DOI:10.32604/cmc.2021.018449 - 24 August 2021

    Abstract The exponential increase in new coronavirus disease 2019 ({COVID-19}) cases and deaths has made COVID-19 the leading cause of death in many countries. Thus, in this study, we propose an efficient technique for the automatic detection of COVID-19 and pneumonia based on X-ray images. A stacked denoising convolutional autoencoder (SDCA) model was proposed to classify X-ray images into three classes: normal, pneumonia, and {COVID-19}. The SDCA model was used to obtain a good representation of the input data and extract the relevant features from noisy images. The proposed model’s architecture mainly composed of eight autoencoders, More >

  • Open Access

    ARTICLE

    Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis

    Yu-Dong Zhang1, Muhammad Attique Khan2, Ziquan Zhu3, Shui-Hua Wang4,*

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3145-3162, 2021, DOI:10.32604/cmc.2021.018040 - 24 August 2021

    Abstract (Aim) COVID-19 is an ongoing infectious disease. It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional computer vision methods have achieved promising results on the automatic smart diagnosis. (Method) This study aims to propose a novel deep learning method that can obtain better performance. We use the pseudo-Zernike moment (PZM), derived from Zernike moment, as the extracted features. Two settings are introducing: (i) image plane over unit circle; and (ii) image plane inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder (DSSAE) as the classifier. Besides, multiple-way… More >

  • Open Access

    ARTICLE

    An Intelligent Gestational Diabetes Diagnosis Model Using Deep Stacked Autoencoder

    A. Sumathi1,*, S. Meganathan1, B. Vijila Ravisankar2

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3109-3126, 2021, DOI:10.32604/cmc.2021.017612 - 24 August 2021

    Abstract Gestational Diabetes Mellitus (GDM) is one of the commonly occurring diseases among women during pregnancy. Oral Glucose Tolerance Test (OGTT) is followed universally in the diagnosis of GDM diagnosis at early pregnancy which is costly and ineffective. So, there is a need to design an effective and automated GDM diagnosis and classification model. The recent developments in the field of Deep Learning (DL) are useful in diagnosing different diseases. In this view, the current research article presents a new outlier detection with deep-stacked Autoencoder (OD-DSAE) model for GDM diagnosis and classification. The goal of the… More >

  • Open Access

    ARTICLE

    FREPD: A Robust Federated Learning Framework on Variational Autoencoder

    Zhipin Gu1, Liangzhong He2, Peiyan Li1, Peng Sun3, Jiangyong Shi1, Yuexiang Yang1,*

    Computer Systems Science and Engineering, Vol.39, No.3, pp. 307-320, 2021, DOI:10.32604/csse.2021.017969 - 12 August 2021

    Abstract Federated learning is an ideal solution to the limitation of not preserving the users’ privacy information in edge computing. In federated learning, the cloud aggregates local model updates from the devices to generate a global model. To protect devices’ privacy, the cloud is designed to have no visibility into how these updates are generated, making detecting and defending malicious model updates a challenging task. Unlike existing works that struggle to tolerate adversarial attacks, the paper manages to exclude malicious updates from the global model’s aggregation. This paper focuses on Byzantine attack and backdoor attack in… More >

  • Open Access

    ARTICLE

    AttEF: Convolutional LSTM Encoder-Forecaster with Attention Module for Precipitation Nowcasting

    Wei Fang1,2,*, Lin Pang1, Weinan Yi1, Victor S. Sheng3

    Intelligent Automation & Soft Computing, Vol.30, No.2, pp. 453-466, 2021, DOI:10.32604/iasc.2021.016589 - 11 August 2021

    Abstract Precipitation nowcasting has become an essential technology underlying various public services ranging from weather advisories to citywide rainfall alerts. The main challenge facing many algorithms is the high non-linearity and temporal-spatial complexity of the radar image. Convolutional Long Short-Term Memory (ConvLSTM) is appropriate for modeling spatiotemporal variations as it integrates the convolution operator into recurrent state transition functions. However, the technical characteristic of encoding the input sequence into a fixed-size vector cannot guarantee that ConvLSTM maintains adequate sequence representations in the information flow, which affects the performance of the task. In this paper, we propose… More >

  • Open Access

    ARTICLE

    MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks

    Juhong Tie1,2,*, Hui Peng2, Jiliu Zhou1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 427-445, 2021, DOI:10.32604/cmes.2021.014107 - 22 July 2021

    Abstract The main task of magnetic resonance imaging (MRI) automatic brain tumor segmentation is to automatically segment the brain tumor edema, peritumoral edema, endoscopic core, enhancing tumor core and nonenhancing tumor core from 3D MR images. Because the location, size, shape and intensity of brain tumors vary greatly, it is very difficult to segment these brain tumor regions automatically. In this paper, by combining the advantages of DenseNet and ResNet, we proposed a new 3D U-Net with dense encoder blocks and residual decoder blocks. We used dense blocks in the encoder part and residual blocks in… More >

Displaying 121-130 on page 13 of 154. Per Page