Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (359)
  • Open Access

    ARTICLE

    EXPERIMENTAL AND 3D-CFD STUDY ON OPTIMIZATION OF CONTROL VALVE DIAMETER FOR A CONVERGENT VORTEX TUBE

    Seyed Ehsan Rafiee*, M. M. Sadeghiazad

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-15, 2016, DOI:10.5098/hmt.7.13

    Abstract The aim of this investigation is study on separation phenomenon inside a special vortex tube affected by structural and physical factors including; throttle diameter, nozzle number and injection pressure as well as the parametric optimization based on separation efficiency using experimental and 3D-CFD methods. The results show that convergent VT with Dth=5.5mm provides 30.01% and 20.04% higher cooling and heating effectiveness compared to basic model. As another result, the higher injection pressure, the higher cooling effectiveness. The cooling effectiveness improves (16.86%) with increase in slot number up to N=4, then decreases. The maximum disagreement between experimental and predicted values is… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF THE INTENSIFICATION OF HEAT TRANSFER BY POOL BOILING LN2: APPLICATION TO COOLING OF A BRASS RIBBON IN HORIZONTAL POSITION

    A. Zoubira , R. Agounouna,*, I. Kadirib, K. Sbaia , M. Rahmounea

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.35

    Abstract Boiling heat transfer process is important because it is a way to increase the flux density transmitted at low temperature differences. To quantify the thermal exchanges, we performed an experimental study of the nitrogen pool boiling, in transient conditions, on a horizontal brass ribbon for a fixed flux density. The results show that there is no break between the monophasic convection zone and the nucleated boiling region. In the nucleated boiling zone, the temperature variations are very small. We also note that the overheating required to trigger boiling increases with the time delay after the activation of nucleation sites. More >

  • Open Access

    ARTICLE

    Experimental Investigation on the Strength and Ductility Performance of SteelTimber-Steel Joints with Screw and Steel-Tube Fasteners

    Huifeng Yang, Mingwang Wu, Rixin Gu, Hang Cao, Kai Xiao, Benkai Shi*

    Journal of Renewable Materials, Vol.11, No.12, pp. 4175-4195, 2023, DOI:10.32604/jrm.2023.028507

    Abstract This article presents experimental results of steel-timber-steel (STS) joints loaded parallel to grain. Eight groups of specimens were designed, and tensile tests were performed. The fastener types and fastener numbers were considered to evaluate the tensile strengths and ductility performances of the STS joints. The screws with 6 mm diameter and the innovative steel-tubes with 18 mm diameter were adopted as connecting fasteners. The experimental results were discussed in terms of yielding and ultimate strengths, slip stiffness, and ductility factors. The ductility classification and failure mechanisms of each group of specimens were analyzed. It was demonstrated that the STS joint… More >

  • Open Access

    ARTICLE

    Experimental Study on Gas Flow Uniformity in a Diesel Particulate Filter Carrier

    Zhengyong Wang1, Jianhua Zhang2, Guoliang Su3, Peixing Yang4, Xiantao Fan4, Shuzhan Bai1, Ke Sun1,*, Guihua Wang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 193-204, 2024, DOI:10.32604/fdmp.2023.030561

    Abstract A Diesel Particulate Filter (DPF) is a critical device for diesel engine exhaust products treatment. When using active-regeneration purification methods, on the one hand, a spatially irregular gas flow can produce relatively high local temperatures, potentially resulting in damage to the carrier; On the other hand, the internal temperature field can also undergo significant changes contributing to increase this risk. This study explores the gas flow uniformity in a DPF carrier and the related temperature behavior under drop-to-idle (DTI) condition by means of bench tests. It is shown that the considered silicon carbide carrier exhibits good flow uniformity, with a… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the Aerodynamic Characteristics of High-Speed Pantographs with Supporting Beam Wind Deflectors

    Shiyang Song1,*, Tongxin Han2

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 127-145, 2024, DOI:10.32604/fdmp.2023.030137

    Abstract Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips, which exacerbates wear and affects the current collection performance of the pantograph-catenary system, a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics (CFD) simulations. The results demonstrate that the size, position, and installation orientation of the wind deflectors significantly influence the amount of force compensation. They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards, thereby forming a “π” shape. Moreover, the lift force compensation provided by the wind… More >

  • Open Access

    ARTICLE

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

    Guiwu Lin, Kaige Liu, Yuliang Chen*, Yunpeng Ji, Rui Jiang

    Journal of Renewable Materials, Vol.11, No.11, pp. 3957-3975, 2023, DOI:10.32604/jrm.2023.028290

    Abstract This paper presents an experimental study to explore the compressive properties of fiber recycled aggregate concrete. A total of 75 specimens with the replacement rate of recycled coarse aggregate and fiber type were conducted under a uniaxial compressive test. The failure modes, stress-strain whole curves, peak stress, peak strain, and energy dissipation capacity were systematically observed and revealed. Test results indicate that steel fiber has the best modification effect on energy dissipation capacity and the toughness index of recycled concrete, corresponding to the enhancement of 81.75% and 22.90% on average. The addition of polyvinyl alcohol fiber can effectively improve the… More > Graphic Abstract

    Experimental Investigation on Compressive Properties of Fiber Recycled Aggregate Concrete

  • Open Access

    ARTICLE

    Experimental Investigation on Fracturing Behaviors after Liquid Nitrogen Pre-Injection in High-Temperature Sandstone

    Decheng Li1, Yan Zhang2, Dongdong Ma2, Haozhe Geng1, Yu Wu1,2,*

    Energy Engineering, Vol.120, No.11, pp. 2503-2516, 2023, DOI:10.32604/ee.2023.041803

    Abstract The fracturing process of sandstone is inherently complex due to its loose internal structure and deformation adaptability. Liquid nitrogen pre-injection has emerged as a promising approach to damage reservoir rocks, effectively reducing fracture pressure and establishing intricate fracture networks, thus offering a potential solution for reservoir reconstruction. To unravel the fundamental mechanisms governing sandstone fracturing behaviors following liquid nitrogen pre-injection, sandstone fracturing experiments were conducted under varying durations of liquid nitrogen injection, rock temperature, and in-situ stress conditions. The experiments showcased the evolution of injection pressure and fracture characteristics under different testing conditions, complemented by electron microscope analysis to elucidate… More >

  • Open Access

    ARTICLE

    Numerical-Experimental Analysis of the Coal Fracture Formation Mechanism Induced by Liquid CO2 Explosion

    Yun Lei1,2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.12, pp. 3021-3032, 2023, DOI:10.32604/fdmp.2023.029570

    Abstract The highly inefficient simultaneous extraction of coal and gas from low-permeability and high-gas coal seams in deep mines is a major problem often restricting the sustainable development of coal industry. A possible way to solve this problem under deep and complex geological conditions is represented by the technology based on the phase-change induced explosion of liquid carbon dioxide. In this work, the mechanism of formation of the coal mass fracture circle resulting from the gas cracking process is theoretically analyzed. Numerical simulations show that a blasting crushing zone with a radius of 1.0 m is formed around the blasting hole.… More >

  • Open Access

    ARTICLE

    A Spider Monkey Optimization Algorithm Combining Opposition-Based Learning and Orthogonal Experimental Design

    Weizhi Liao1, Xiaoyun Xia1,3, Xiaojun Jia1, Shigen Shen2,*, Helin Zhuang4,*, Xianchao Zhang1

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3297-3323, 2023, DOI:10.32604/cmc.2023.040967

    Abstract As a new bionic algorithm, Spider Monkey Optimization (SMO) has been widely used in various complex optimization problems in recent years. However, the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant. Thus, this paper focuses on how to reconstruct SMO to improve its performance, and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design (SMO3) is developed. A position updating method based on the historical optimal domain and particle swarm for Local Leader Phase (LLP) and Global Leader Phase (GLP) is presented to improve the… More >

  • Open Access

    ARTICLE

    Meter-Scale Thin-Walled Structure with Lattice Infill for Fuel Tank Supporting Component of Satellite: Multiscale Design and Experimental Verification

    Xiaoyu Zhang1,2, Huizhong Zeng2, Shaohui Zhang2, Yan Zhang3,*, Mi Xiao4, Liping Liu2, Hao Zhou2,*, Hongyou Chai2, Liang Gao4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 201-220, 2024, DOI:10.32604/cmes.2023.029389

    Abstract Lightweight thin-walled structures with lattice infill are widely desired in satellite for their high stiffness-to-weight ratio and superior buckling strength resulting from the sandwich effect. Such structures can be fabricated by metallic additive manufacturing technique, such as selective laser melting (SLM). However, the maximum dimensions of actual structures are usually in a sub-meter scale, which results in restrictions on their appliance in aerospace and other fields. In this work, a meter-scale thin-walled structure with lattice infill is designed for the fuel tank supporting component of the satellite by integrating a self-supporting lattice into the thickness optimization of the thin-wall. The… More >

Displaying 31-40 on page 4 of 359. Per Page