Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (117)
  • Open Access

    ARTICLE

    Biomedical Osteosarcoma Image Classification Using Elephant Herd Optimization and Deep Learning

    Areej A. Malibari1, Jaber S. Alzahrani2, Marwa Obayya3, Noha Negm4,5, Mohammed Abdullah Al-Hagery6, Ahmed S. Salama7, Anwer Mustafa Hilal8,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6443-6459, 2022, DOI:10.32604/cmc.2022.031324 - 28 July 2022

    Abstract Osteosarcoma is a type of malignant bone tumor that is reported across the globe. Recent advancements in Machine Learning (ML) and Deep Learning (DL) models enable the detection and classification of malignancies in biomedical images. In this regard, the current study introduces a new Biomedical Osteosarcoma Image Classification using Elephant Herd Optimization and Deep Transfer Learning (BOIC-EHODTL) model. The presented BOIC-EHODTL model examines the biomedical images to diagnose distinct kinds of osteosarcoma. At the initial stage, Gabor Filter (GF) is applied as a pre-processing technique to get rid of the noise from images. In addition,… More >

  • Open Access

    ARTICLE

    Intelligent Medical Diagnostic System for Hepatitis B

    Dalwinder Singh1, Deepak Prashar1, Jimmy Singla1, Arfat Ahmad Khan2, Mohammed Al-Sarem3,4,*, Neesrin Ali Kurdi3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 6047-6068, 2022, DOI:10.32604/cmc.2022.031255 - 28 July 2022

    Abstract The hepatitis B virus is the most deadly virus, which significantly affects the human liver. The termination of the hepatitis B virus is mandatory and can be done by taking precautions as well as a suitable cure in its introductory stage; otherwise, it will become a severe problem and make a human liver suffer from the most dangerous diseases, such as liver cancer. In this paper, two medical diagnostic systems are developed for the diagnosis of this life-threatening virus. The methodologies used to develop these models are fuzzy logic and the neuro-fuzzy technique. The diverse… More >

  • Open Access

    ARTICLE

    Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS

    Ngoc Thai Huynh1, Tien V. T. Nguyen2, Quoc Manh Nguyen3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5961-5983, 2022, DOI:10.32604/cmc.2022.029484 - 28 July 2022

    Abstract To achieve high work performance for compliant mechanisms of motion scope, continuous work condition, and high frequency, we propose a new hybrid algorithm that could be applied to multi-objective optimum design. In this investigation, we use the tools of finite element analysis (FEA) for a magnification mechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements. A poly-algorithm including the Grey-Taguchi method, fuzzy logic system, and adaptive neuro-fuzzy inference system (ANFIS) algorithm, was utilized mainly in this study.… More >

  • Open Access

    ARTICLE

    Energy-Efficient Secure Adaptive Neuro Fuzzy Based Clustering Technique for Mobile Adhoc Networks

    Maganti Srinivas*, M. Ramesh Patnaik

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1755-1767, 2022, DOI:10.32604/iasc.2022.026355 - 25 May 2022

    Abstract In recent times, Mobile Ad Hoc Network (MANET) becomes a familiar research field owing to its applicability in distinct scenarios. MANET comprises a set of autonomous mobile nodes which independently move and send data through wireless channels. Energy efficiency is considered a critical design issue in MANET and can be addressed by the use of the clustering process. Clustering is treated as a proficient approach, which partitions the mobile nodes into groups called clusters and elects a node as cluster head (CH). On the other hand, the nature of wireless links poses security as a… More >

  • Open Access

    ARTICLE

    Chaotic Krill Herd with Fuzzy Based Routing Protocol for Wireless Networks

    Ashit Kumar Dutta1,*, Yasser Albagory2, Farhan M. Obesat3, Anas Waleed Abulfaraj4

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1659-1674, 2022, DOI:10.32604/iasc.2022.026263 - 25 May 2022

    Abstract Energy is considered a valuable source in wireless sensor networks (WSN) for effectively improving the survivability of the network. The non-uniform dispersion of load in the network causes unbalanced energy dissipation which can result in network interruption. The route selection process can be considered as an optimization problem and is solved by utilize of artificial intelligence (AI) techniques. This study introduces an energy efficient chaotic krill herd algorithm with adaptive neuro fuzzy inference system based routing (EECKHA-ANFIS) protocol for WSN. The goal of the EECKHA-ANFIS method is for deriving a better set of routes to… More >

  • Open Access

    ARTICLE

    Energy Price Forecasting Through Novel Fuzzy Type-1 Membership Functions

    Muhammad Hamza Azam1, Mohd Hilmi Hasan1,*, Azlinda A Malik2, Saima Hassan3, Said Jadid Abdulkadir1

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1799-1815, 2022, DOI:10.32604/cmc.2022.028292 - 18 May 2022

    Abstract Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices. Electricity price forecasting have been a critical input to energy corporations’ strategic decision-making systems over the last 15 years. Many strategies have been utilized for price forecasting in the past, however Artificial Intelligence Techniques (Fuzzy Logic and ANN) have proven to be more efficient than traditional techniques (Regression and Time Series). Fuzzy logic is an approach that uses membership functions (MF) and fuzzy inference model to forecast future electricity prices. Fuzzy c-means (FCM)… More >

  • Open Access

    ARTICLE

    Enhanced Robotic Vision System Based on Deep Learning and Image Fusion

    E. A. Alabdulkreem1, Ahmed Sedik2, Abeer D. Algarni3,*, Ghada M. El Banby4, Fathi E. Abd El-Samie3,5, Naglaa F. Soliman3,6

    CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 1845-1861, 2022, DOI:10.32604/cmc.2022.023905 - 18 May 2022

    Abstract Image fusion has become one of the interesting fields that attract researchers to integrate information from different image sources. It is involved in several applications. One of the recent applications is the robotic vision. This application necessitates image enhancement of both infrared (IR) and visible images. This paper presents a Robot Human Interaction System (RHIS) based on image fusion and deep learning. The basic objective of this system is to fuse visual and IR images for efficient feature extraction from the captured images. Then, an enhancement model is carried out on the fused image to More >

  • Open Access

    ARTICLE

    Soil Nutrient Detection and Recommendation Using IoT and Fuzzy Logic

    R. Madhumathi1,*, T. Arumuganathan2, R. Shruthi1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 455-469, 2022, DOI:10.32604/csse.2022.023792 - 20 April 2022

    Abstract Precision agriculture is a modern farming practice that involves the usage of Internet of Things (IoT) to provide an intelligent farm management system. One of the important aspects in agriculture is the analysis of soil nutrients and balancing these inputs are essential for proper crop growth. The crop productivity and the soil fertility can be improved with effective nutrient management and precise application of fertilizers. This can be done by identifying the deficient nutrients with the help of an IoT system. As traditional approach is time consuming, an IoT-enabled system is developed using the colorimetry… More >

  • Open Access

    ARTICLE

    Fuzzy Logic with Archimedes Optimization Based Biomedical Data Classification Model

    Mahmoud Ragab1,2,3,*, Diaa Hamed4,5

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4185-4200, 2022, DOI:10.32604/cmc.2022.027074 - 29 March 2022

    Abstract Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making. Besides, the advances of machine learning (ML) techniques assist to perform the effective classification task. With this motivation, this paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm (FCA-BFS) with optimal support vector machine (OSVM) model, named FCABFS-OSVM for medical data classification. The proposed FCABFS-OSVM technique intends to classify the healthcare data by the use of clustering and classification models. Besides, the proposed FCABFS-OSVM technique involves the design of FCABFS technique More >

  • Open Access

    ARTICLE

    An Interpretable Artificial Intelligence Based Smart Agriculture System

    Fariza Sabrina1,*, Shaleeza Sohail2, Farnaz Farid3, Sayka Jahan4, Farhad Ahamed5, Steven Gordon6

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3777-3797, 2022, DOI:10.32604/cmc.2022.026363 - 29 March 2022

    Abstract With increasing world population the demand of food production has increased exponentially. Internet of Things (IoT) based smart agriculture system can play a vital role in optimising crop yield by managing crop requirements in real-time. Interpretability can be an important factor to make such systems trusted and easily adopted by farmers. In this paper, we propose a novel artificial intelligence-based agriculture system that uses IoT data to monitor the environment and alerts farmers to take the required actions for maintaining ideal conditions for crop production. The strength of the proposed system is in its interpretability… More >

Displaying 51-60 on page 6 of 117. Per Page