Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    REVIEW

    Research Progress of Drug Delivery Systems Consisting of Hydrogels Loaded with Extracellular Vesicles in Tumor Therapy

    Shaojian Zou1,#, Lipeng Zhang2,#, Xiang Chen3,#, Zhuomin Wang2, Xinhui Zhu2, Dandong Luo4, Shengxun Mao2,*, Zhen Zong2,*

    Oncology Research, Vol.33, No.12, pp. 3753-3788, 2025, DOI:10.32604/or.2025.067586 - 27 November 2025

    Abstract Traditional cancer therapies have limitations like poor efficacy on advanced tumors, healthy tissue damage, side effects, and drug resistance, creating an urgent need for new strategies. Hydrogels have good biocompatibility and controlled release, while extracellular vesicles (EVs) enable targeting and bioactive transport. This review systematically summarizes hydrogels and EVs, focusing on the construction of hydrogel-EV delivery system, key influencing factors, drug delivery mechanisms, and tumor therapy apps, clarifying their synergies. The system overcomes single-carrier flaws, construction methods/key factors affect performance, preclinical studies have confirmed efficacy in multiple therapies, but large-scale production and in vivo stability challenges More >

  • Open Access

    REVIEW

    A Minireview on Comprehensive Application of Hydrogels Used as Electrolytes in Flexible Zinc-Air Batteries

    Yinglai Tang, Jiale Xie, Yujie Chen, Xingxu Liu, Xiaomin Kang*

    Journal of Polymer Materials, Vol.42, No.3, pp. 587-619, 2025, DOI:10.32604/jpm.2025.067647 - 30 September 2025

    Abstract With the rapid development of flexible and wearable electronic devices, the demand for flexible power sources with high energy density and long service life is imminent. Zinc-air batteries have long been regarded as an important development direction in the future due to their high safety, environmental efficiency, abundant reserves and low cost. However, problems such as zinc dendrite growth, corrosion, by-product generation, hydrogen evolution and leakage, and evaporation of electrolyte affect the commercialization of zinc-air batteries. In addition, currently widely used aqueous electrolytes lead to larger batteries, which is not conducive to the development of… More >

  • Open Access

    REVIEW

    Design of Nanostructured Surfaces and Hydrogel Coatings for Anti-Bacterial Adhesion

    Nanpu Cao1, Huan Luo1, Song Yue1, Yong Chen1, Mao Xu1, Pu Cao1, Tao Xin1, Hongying Luo1, Fa Zhang2,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 661-675, 2025, DOI:10.32604/jpm.2025.067313 - 30 September 2025

    Abstract This review systematically summarizes recent advancements in the design of antibacterial hydrogels and the surface-related factors influencing microbial adhesion to polymeric materials. Hydrogels, characterized by their three-dimensional porous architecture and ultra-high water content, serve as ideal platforms for incorporating antibacterial agents (e.g., metal ions, natural polymers) through physical/chemical interactions, enabling sustained release and enhanced antibacterial efficacy. For traditional polymers, surface properties (e.g., roughness, charge, superhydrophobicity, free energy, nanoforce gradients) play critical roles in microbial adhesion. Modifying the surface properties of polymers through surface treatment can regulate antibacterial performance. In particular, by referencing the micro/nanostructures found More >

  • Open Access

    ARTICLE

    Computational Study Analysis of Adsorption Behavior of MgFe2O4-Collagen Hydrogels with Spinal Cord Tissues

    Imandeena Sofileeya1,2, Surajudeen Sikiru1,2,*, Nur Hidayah Shahemi1, Niraj Kumar3, Mohd Muzamir Mahat1,*

    Journal of Polymer Materials, Vol.42, No.3, pp. 713-728, 2025, DOI:10.32604/jpm.2025.065378 - 30 September 2025

    Abstract Spinal cord injury presents a significant challenge in regenerative medicine due to the complex and delicate nature of neural tissue repair. This study aims to design a conductive hydrogel embedded with magnetic MgFe2O4 nanoparticles to establish a bioelectrically active and spatially stable microenvironment that promotes spinal cord regeneration through computational analysis (BIOVIA Materials Studio). Hydrogels, known for their biocompatibility and extracellular matrix-mimicking properties, support essential cellular behaviors such as adhesion, proliferation, and migration. The integration of MgFe2O4 nanoparticles imparts both electrical conductivity and magnetic responsiveness, enabling controlled transmission of electrical signals that are crucial for guiding… More >

  • Open Access

    REVIEW

    Ionic Electroactive Polymers as Renewable Materials and Their Actuators: A Review

    Tarek Dayyoub1,2,*, Mikhail Zadorozhnyy1,2, Dmitriy G. Ladokhin1, Emil Askerov1, Ksenia V. Filippova1, Lidiia D. Iudina1, Elizaveta Iushina1, Dmitry V. Telyshev1,3, Aleksey Maksimkin1

    Journal of Renewable Materials, Vol.13, No.7, pp. 1267-1292, 2025, DOI:10.32604/jrm.2025.02024-0022 - 22 July 2025

    Abstract The development of actuators based on ionic polymers as soft robotics, artificial muscles, and sensors is currently considered one of the most urgent topics. They are lightweight materials, in addition to their high efficiency, and they can be controlled by a low power source. Nevertheless, the most popular ionic polymers are derived from fossil-based resources. Hence, it is now deemed crucial to produce these actuators using sustainable materials. In this review, the use of ionic polymeric materials as actuators is reviewed through the emphasis on their role in the domain of renewable materials. The review… More > Graphic Abstract

    Ionic Electroactive Polymers as Renewable Materials and Their Actuators: A Review

  • Open Access

    REVIEW

    3D Printed Hydrogels for Soft Robotic Applications

    Kunlin Wu, Jingcheng Xiao, Junwei Li, Yifan Wang*

    Journal of Polymer Materials, Vol.42, No.2, pp. 277-305, 2025, DOI:10.32604/jpm.2025.065269 - 14 July 2025

    Abstract The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible, adaptable, and biocompatible systems. Hydrogels, with their high-water content and responsiveness to stimuli, are suitable for actuators, sensors, and robotic systems that require safe interaction and precise manipulation. Unlike traditional techniques, 3D printing offers enhanced capabilities in tailoring structural complexity, resolution, and integrated functionality, enabling the direct fabrication of hydrogel systems with programmed mechanical and functional properties. In this perspective, we explore the evolving role of 3D-printed hydrogels in soft robotics, covering their material composition, fabrication techniques, and diverse applications. We highlight More >

  • Open Access

    ARTICLE

    Graphite/Polyvinyl Alcohol Hydrogels with Fluoride and Iodine Deionization for Solar-Driven Interfacial Evaporation

    Ziyang Qiu1,2, Hanjun Yang1,2,*

    Journal of Polymer Materials, Vol.41, No.4, pp. 329-340, 2024, DOI:10.32604/jpm.2024.057953 - 16 December 2024

    Abstract Hydrogels are emerging as promising candidates for solar-driven interfacial evaporation in water purification. Our research introduces a graphite polyvinyl alcohol hydrogel (GPVA) evaporator designed as a photothermal conversion interface, showcasing high performance with an evaporation rate of 2.43 kg m−2 h−1 and an efficiency of 91.9% under solar irradiance of 1 kW m−2. The layered graphite structure of the GPVA hydrogel enhances its ion and dye adsorption capabilities, effectively removing fluoride, iodine, and other contaminants from water. In cyclic evaporation tests, the GPVA hydrogel evaporator demonstrated remarkable stability and long-term durability, maintaining an evaporation rate of 2.43 More >

  • Open Access

    ARTICLE

    Thermosensitive and Wound-Healing Gelatin-Alginate Biopolymer Hydrogels Modified with Humic Acids

    Denis Miroshnichenko1, Vladimir Lebedev2, Katerina Lebedeva2, Аnna Cherkashina2, Sergey Petrushenko3,4,*, Olena Bogoyavlenska1, Аnzhela Olkhovska5, Ihor Hrubnyk6, Liudmyla Maloshtan6, Natalja Klochko7

    Journal of Renewable Materials, Vol.12, No.10, pp. 1691-1713, 2024, DOI:10.32604/jrm.2024.054769 - 23 October 2024

    Abstract The main goal of the article is the creation and study of thermosensitive and wound-healing gelatin-alginate biopolymer hydrogels modified with humic acids. Their rheological properties, swelling and contraction behavior were experimentally investigated, elucidated using Fourier transform infrared spectroscopy and used to achieve the physiological melting point, which is necessary for successful drug delivery. It has been shown that in the gelatin-alginate-humic acid biopolymer hydrogels systems, it is possible to obtain a gel-sol transition temperature close to the physiological temperature of 37°C, which is important for drug delivery in the treatment of wounds. By changing the… More > Graphic Abstract

    Thermosensitive and Wound-Healing Gelatin-Alginate Biopolymer Hydrogels Modified with Humic Acids

  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685 - 21 August 2024

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888 - 10 November 2023

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before… More > Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

Displaying 1-10 on page 1 of 30. Per Page