Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (113)
  • Open Access

    ARTICLE

    Fuzzy-Based Automatic Epileptic Seizure Detection Framework

    Aayesha1, Muhammad Bilal Qureshi2, Muhammad Afzaal3, Muhammad Shuaib Qureshi4, Jeonghwan Gwak5,6,7,8,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 5601-5630, 2022, DOI:10.32604/cmc.2022.020348

    Abstract Detection of epileptic seizures on the basis of Electroencephalogram (EEG) recordings is a challenging task due to the complex, non-stationary and non-linear nature of these biomedical signals. In the existing literature, a number of automatic epileptic seizure detection methods have been proposed that extract useful features from EEG segments and classify them using machine learning algorithms. Some characterizing features of epileptic and non-epileptic EEG signals overlap; therefore, it requires that analysis of signals must be performed from diverse perspectives. Few studies analyzed these signals in diverse domains to identify distinguishing characteristics of epileptic EEG signals. To pose the challenge mentioned… More >

  • Open Access

    ARTICLE

    Artifacts Reduction Using Multi-Scale Feature Attention Network in Compressed Medical Images

    Seonjae Kim, Dongsan Jun*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3267-3279, 2022, DOI:10.32604/cmc.2022.020651

    Abstract Medical image compression is one of the essential technologies to facilitate real-time medical data transmission in remote healthcare applications. In general, image compression can introduce undesired coding artifacts, such as blocking artifacts and ringing effects. In this paper, we proposed a Multi-Scale Feature Attention Network (MSFAN) with two essential parts, which are multi-scale feature extraction layers and feature attention layers to efficiently remove coding artifacts of compressed medical images. Multi-scale feature extraction layers have four Feature Extraction (FE) blocks. Each FE block consists of five convolution layers and one CA block for weighted skip connection. In order to optimize the… More >

  • Open Access

    ARTICLE

    Efficient Energy Optimized Faithful Adder with Parallel Carry Generation

    K. N. Vijeyakumar1, S. Maragatharaj2,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2543-2561, 2022, DOI:10.32604/cmc.2022.019789

    Abstract Approximate computing has received significant attention in the design of portable CMOS hardware for error-tolerant applications. This work proposes an approximate adder that to optimize area delay and achieve energy efficiency using Parallel Carry (PC) generation logic. For ‘n’ bits in input, the proposed algorithm use approximate addition for least n/2 significant bits and exact addition for most n/2 significant bits. A simple OR logic with no carry propagation is used to implement the approximate part. In the exact part, addition is performed using 4-bit adder blocks that implement PC at block level to reduce node capacitance in the critical… More >

  • Open Access

    ARTICLE

    Breast Cancer Detection Through Feature Clustering and Deep Learning

    Hanan A. Hosni Mahmoud, Amal H. Alharbi, Norah S. Alghamdi*

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1273-1286, 2022, DOI:10.32604/iasc.2022.020662

    Abstract In this paper we propose a computerized breast cancer detection and breast masses classification system utilizing mammograms. The motivation of the proposed method is to detect breast cancer tumors in early stages with more accuracy and less negative false cases. Our proposed method utilizes clustering of different features by segmenting the breast mammogram and then extracts deep features using the presented Convolution Neural Network (CNN). The extracted features are then combined with subjective features such as shape, texture and density. The combined features are then utilized by the Extreme Learning Machine Clustering (ELMC) algorithm to combine segments together to identify… More >

  • Open Access

    ARTICLE

    Blood Group Classification System Based on Image Processing Techniques

    S. A. Shaban*, D. L. Elsheweikh

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 817-834, 2022, DOI:10.32604/iasc.2022.019500

    Abstract The present paper proposes a novel system that automatically classifies the eight different blood groups according to the ABO and Rh blood group systems. The proposed system is developed by applying MATLAB’s image processing techniques on the blood sample images. These images are acquired from the laboratory using the slide test. It utilizes a mean filter for removing noise from blood sample images. In addition, the Contrast Limited Adaptive Histogram Equalization (CLAHE) is used for enhancing the image characteristics analysis. The proposed system also utilizes the automated threshold strategy (Otsu’s approach) for obtaining the blood samples binary images. Since, adding… More >

  • Open Access

    ARTICLE

    Computerized Detection of Limbal Stem Cell Deficiency from Digital Cornea Images

    Hanan A. Hosni Mahmoud*, Doaa S. Khafga, Amal H. Alharbi

    Computer Systems Science and Engineering, Vol.40, No.2, pp. 805-821, 2022, DOI:10.32604/csse.2022.019633

    Abstract Limbal Stem Cell Deficiency (LSCD) is an eye disease that can cause corneal opacity and vascularization. In its advanced stage it can lead to a degree of visual impairment. It involves the changing in the semispherical shape of the cornea to a drooping shape to downwards direction. LSCD is hard to be diagnosed at early stages. The color and texture of the cornea surface can provide significant information about the cornea affected by LSCD. Parameters such as shape and texture are very crucial to differentiate normal from LSCD cornea. Although several medical approaches exist, most of them requires complicated procedure… More >

  • Open Access

    ARTICLE

    Using Image Processing Technology and General Fluid Mechanics Principles to Model Smoke Diffusion in Forest Fires

    Liying Zhu*, Ang Wang, Fang Jin

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1213-1222, 2021, DOI:10.32604/fdmp.2021.017572

    Abstract In the present study, the laws of smoke diffusion during forest fires are determined using the general principles of fluid mechanics and dedicated data obtained experimentally using an “ad hoc” imaging technology. Experimental images mimicking smoke in a real scenario are used to extract some “statistics”. These in turn are used to obtain the “divergence” of the flow (this fluid-dynamic parameter describing the amount of air that converges to a certain place from the surroundings or vice versa). The results show that the divergence of the smoke depends on the outside airflow and finally tends to zero as time passes.… More >

  • Open Access

    ARTICLE

    Screening of COVID-19 Patients Using Deep Learning and IoT Framework

    Harshit Kaushik1, Dilbag Singh2, Shailendra Tiwari3, Manjit Kaur2, Chang-Won Jeong4, Yunyoung Nam5,*, Muhammad Attique Khan6

    CMC-Computers, Materials & Continua, Vol.69, No.3, pp. 3459-3475, 2021, DOI:10.32604/cmc.2021.017337

    Abstract In March 2020, the World Health Organization declared the coronavirus disease (COVID-19) outbreak as a pandemic due to its uncontrolled global spread. Reverse transcription polymerase chain reaction is a laboratory test that is widely used for the diagnosis of this deadly disease. However, the limited availability of testing kits and qualified staff and the drastically increasing number of cases have hampered massive testing. To handle COVID-19 testing problems, we apply the Internet of Things and artificial intelligence to achieve self-adaptive, secure, and fast resource allocation, real-time tracking, remote screening, and patient monitoring. In addition, we implement a cloud platform for… More >

  • Open Access

    ARTICLE

    Lightweight Transfer Learning Models for Ultrasound-Guided Classification of COVID-19 Patients

    Mohamed Esmail Karar1,2, Omar Reyad1,3, Mohammed Abd-Elnaby4, Abdel-Haleem Abdel-Aty5,6, Marwa Ahmed Shouman7,*

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2295-2312, 2021, DOI:10.32604/cmc.2021.018671

    Abstract Lightweight deep convolutional neural networks (CNNs) present a good solution to achieve fast and accurate image-guided diagnostic procedures of COVID-19 patients. Recently, advantages of portable Ultrasound (US) imaging such as simplicity and safe procedures have attracted many radiologists for scanning suspected COVID-19 cases. In this paper, a new framework of lightweight deep learning classifiers, namely COVID-LWNet is proposed to identify COVID-19 and pneumonia abnormalities in US images. Compared to traditional deep learning models, lightweight CNNs showed significant performance of real-time vision applications by using mobile devices with limited hardware resources. Four main lightweight deep learning models, namely MobileNets, ShuffleNets, MENet… More >

  • Open Access

    ARTICLE

    A Novel Framework for Multi-Classification of Guava Disease

    Omar Almutiry1, Muhammad Ayaz2, Tariq Sadad3, Ikram Ullah Lali4, Awais Mahmood1,*, Najam Ul Hassan5, Habib Dhahri1

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1915-1926, 2021, DOI:10.32604/cmc.2021.017702

    Abstract Guava is one of the most important fruits in Pakistan, and is gradually boosting the economy of Pakistan. Guava production can be interrupted due to different diseases, such as anthracnose, algal spot, fruit fly, styler end rot and canker. These diseases are usually detected and identified by visual observation, thus automatic detection is required to assist formers. In this research, a new technique was created to detect guava plant diseases using image processing techniques and computer vision. An automated system is developed to support farmers to identify major diseases in guava. We collected healthy and unhealthy images of different guava… More >

Displaying 71-80 on page 8 of 113. Per Page