Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (661)
  • Open Access

    ARTICLE

    Environmentally Friendly Tannic Acid-Furfuryl Alcohol-Soybean Isolate/Casein Composite Foams Reinforced with Wood Fibers

    Jinxing Li1, Mustafa Zor2, Xiaojian Zhou3, Guanben Du3, Denis Rodrigue4, Xiaodong (Alice) Wang1,*

    Journal of Renewable Materials, Vol.13, No.2, pp. 329-347, 2025, DOI:10.32604/jrm.2024.056795 - 20 February 2025

    Abstract In this study, two series of foams based on tannic acid (TA), furfuryl alcohol (FA), soybean protein isolate (SPI), and casein (CA), namely TA–FA–SPI (TS series) and TA–FA–CA (TC series) were developed, and their properties were enhanced by adding poplar fibers (WF). From the samples produced, a complete set of characterization was performed including possible crosslinking reactions, morphology, mechanical properties, flame retardancy, thermal insulation and thermal stability. Fourier-transform infrared spectroscopy (FTIR) revealed possible covalent crosslinking among the components and hydrogen bonding between WF and the matrix. Viscosity results indicated that lower prepolymer viscosity led to… More >

  • Open Access

    ARTICLE

    GPU Usage Time-Based Ordering Management Technique for Tasks Execution to Prevent Running Failures of GPU Tasks in Container Environments

    Joon-Min Gil1, Hyunsu Jeong1, Jihun Kang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2199-2213, 2025, DOI:10.32604/cmc.2025.061182 - 17 February 2025

    Abstract In a cloud environment, graphics processing units (GPUs) are the primary devices used for high-performance computation. They exploit flexible resource utilization, a key advantage of cloud environments. Multiple users share GPUs, which serve as coprocessors of central processing units (CPUs) and are activated only if tasks demand GPU computation. In a container environment, where resources can be shared among multiple users, GPU utilization can be increased by minimizing idle time because the tasks of many users run on a single GPU. However, unlike CPUs and memory, GPUs cannot logically multiplex their resources. Additionally, GPU memory… More >

  • Open Access

    ARTICLE

    MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles

    Fengju Zhang1, Kai Zhu2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2353-2372, 2025, DOI:10.32604/cmc.2024.058944 - 17 February 2025

    Abstract The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2,… More >

  • Open Access

    ARTICLE

    Innovative Approaches to Task Scheduling in Cloud Computing Environments Using an Advanced Willow Catkin Optimization Algorithm

    Jeng-Shyang Pan1,2, Na Yu1, Shu-Chuan Chu1,*, An-Ning Zhang1, Bin Yan3, Junzo Watada4

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2495-2520, 2025, DOI:10.32604/cmc.2024.058450 - 17 February 2025

    Abstract The widespread adoption of cloud computing has underscored the critical importance of efficient resource allocation and management, particularly in task scheduling, which involves assigning tasks to computing resources for optimized resource utilization. Several meta-heuristic algorithms have shown effectiveness in task scheduling, among which the relatively recent Willow Catkin Optimization (WCO) algorithm has demonstrated potential, albeit with apparent needs for enhanced global search capability and convergence speed. To address these limitations of WCO in cloud computing task scheduling, this paper introduces an improved version termed the Advanced Willow Catkin Optimization (AWCO) algorithm. AWCO enhances the algorithm’s… More >

  • Open Access

    ARTICLE

    What Is the Psychosocial Environment of Adolescents with High or Low Internalizing Behavior?

    Changmin Yoo*

    International Journal of Mental Health Promotion, Vol.27, No.1, pp. 77-88, 2025, DOI:10.32604/ijmhp.2025.058577 - 31 January 2025

    Abstract Objective: This study aimed to examine the developmental trajectories of internalizing behaviors among adolescents and to identify key personal and environmental factors associated with these developmental patterns over time. Methods: Data were collected from 2242 adolescents (49.6% girls, aged 13.9–18.9 years) in South Korea. Latent class growth analysis was used to identify distinct developmental patterns of internalizing behaviors. Multinomial logistic regression analyses were conducted to examine the associations between these developmental patterns and various factors including gender, self-esteem, abuse and neglect experiences, peer relationships, and media use. Results: The analysis revealed three latent classes of internalizing… More >

  • Open Access

    ARTICLE

    A Geometric Model Simplification Strategy for CFD Simulation of the Cockpit Internal Environment

    Meng Zhao1, Jiaao Liu2, Yudi Liu3, Zhengwei Long1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.2, pp. 1545-1564, 2025, DOI:10.32604/cmes.2025.058773 - 27 January 2025

    Abstract Computational Fluids Dynamics (CFD) simulations are essential for optimizing the design of a cockpit’s internal environment, but the complex geometric models consume a significant amount of computational resources and time. Arbitrary simplification of geometric models may result in inaccurate calculations of physical fields. To address this issue, this study establishes a geometric model simplification strategy and successfully applies it to a cockpit. The implementation of the whole approach is divided into three steps, summarized in three methods, namely Sensitivity Analysis Method (SAM), Detail Suppression Method (DSM), and Evaluation Standards Method (ESM). Sensitivity analysis of the More >

  • Open Access

    ARTICLE

    Characterization of Physico-Chemical Changes of Lignin Obtained under Different Conditions of Enzymatic Hydrolysis on an Industrial Scale

    Maris Lauberts1,*, Janis Rizikovs1, Matiss Pals1, Karl Pebo2

    Journal of Renewable Materials, Vol.13, No.1, pp. 115-126, 2025, DOI:10.32604/jrm.2024.056815 - 20 January 2025

    Abstract Research-based on lignin as a bioproduct has grown due to its high availability, reactivity, physicochemical stability, and abundance of different aromatic units. Lignin consists of various functional groups, which can react in various chemical reactions and serve as a raw material in various processes to obtain multiple products. These characteristics make lignin suitable for synthesizing products from natural raw materials, replacing fossil ones. Due to a high aromatic variety and complex structural arrangement, lignin isolation and fractionation are still challenging. The aim and novelty of this work was the modification of severity and enzymatic hydrolysis… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Next-Gen UAV Swarm Robotics: Optimisation Techniques and Control Strategies for Dynamic Environments

    Ghulam E Mustafa Abro1,*, Ayman M Abdallah1,2, Faizan Zahid3, Saleem Ahmed4

    Intelligent Automation & Soft Computing, Vol.40, pp. 99-123, 2025, DOI:10.32604/iasc.2025.060364 - 23 January 2025

    Abstract This review synthesises and assesses the most recent developments in Unmanned Aerial Vehicles (UAVs) and swarm robotics, with a specific emphasis on optimisation strategies, path planning, and formation control. The study identifies key methodologies that are driving progress in the field by conducting a comprehensive analysis of seven critical publications. The following are included: sensor-based platforms that facilitate effective obstacle avoidance, cluster-based hierarchical path planning for efficient navigation, and adaptive hybrid controllers for dynamic environments. The review emphasises the substantial contribution of optimisation techniques, including Max-Min Ant Colony Optimisation (MMACO), to the improvement of convergence… More >

  • Open Access

    ARTICLE

    Comprehensive analysis reveals PLK3 as a promising immune target and prognostic indicator in glioma

    TIANYUN ZHU1,2,#, CUNYAN ZHAO1,2,#, RUI GONG1,2, AO QIAN1, XIAOSHU WANG1, FANGHUI LU2, GANG HUO1, LIANGJUN QIAO3, SONG CHEN1,*

    Oncology Research, Vol.33, No.2, pp. 431-442, 2025, DOI:10.32604/or.2024.050794 - 16 January 2025

    Abstract Background: PLK3, which played an important role in cell cycle progression and stress response, was identified as highly expressed in various carcinomas. However, the functions, molecular characteristics, and prognostic value of PLK3 in glioma remained unexplored. Methods: We analyzed PLK3 expression in glioma samples from multiple databases. Both overexpression and knockdown of Plk3 were performed to investigate tumor cell growth in glioma, and the transplanted glioma mouse model demonstrated the role of Plk3 on tumor progression. Immunohistochemistry was conducted to detect PLK3 expression and immune cell infiltration. The trans-well assay for PLK3 on the immune… More >

  • Open Access

    ARTICLE

    Energy-Efficient Internet of Things-Based Wireless Sensor Network for Autonomous Data Validation for Environmental Monitoring

    Tabassum Kanwal1, Saif Ur Rehman1,*, Azhar Imran2, Haitham A. Mahmoud3

    Computer Systems Science and Engineering, Vol.49, pp. 185-212, 2025, DOI:10.32604/csse.2024.056535 - 10 January 2025

    Abstract This study presents an energy-efficient Internet of Things (IoT)-based wireless sensor network (WSN) framework for autonomous data validation in remote environmental monitoring. We address two critical challenges in WSNs: ensuring data reliability and optimizing energy consumption. Our novel approach integrates an artificial neural network (ANN)-based multi-fault detection algorithm with an energy-efficient IoT-WSN architecture. The proposed ANN model is designed to simultaneously detect multiple fault types, including spike faults, stuck-at faults, outliers, and out-of-range faults. We collected sensor data at 5-minute intervals over three months, using temperature and humidity sensors. The ANN was trained on 70%… More >

Displaying 41-50 on page 5 of 661. Per Page