Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (225)
  • Open Access

    ABSTRACT

    Experimental Study on Mechanical Properties of Heat-Treated Hot Dry Rock Samples Under Combined Actions of Triaxial Stress and Pore Pressure

    Daobing Wang1,2, Bo Yu1,*, Dongliang Sun1, Dongxu Han1, Jingfa Li1, Hao Qin1, Peng Wang1, Xufei Yang1, Yajun Deng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.3, pp. 147-148, 2019, DOI:10.32604/icces.2019.04786

    Abstract Hot dry rock (HDR), which is usually buried depth in 3-10 km, contains abundant heat energy for heating the house and making the electricity. Hydraulic fracturing is an effective technology to develop the geothermal resources. In hydraulic fracturing, a large amount of cold water is injected to generate the artificial fractures in subsurface. However, in previous studies, the study on the mechanical properties of HDR under the combined action of triaxial stress and pore pressure is still in its infancy and an exhaustive investigation is lacking. In this study, we experimentally investigated the heat-treated HDR samples with the integrated consideration… More >

  • Open Access

    ABSTRACT

    On the molecular dynamics analysis of defect effect on mechanical properties and fracture behaviors of carbon nanotubes

    Hsien-Chie Cheng1, Yu-Chen Hsu2, Wen-Hwa Chen2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.12, No.2, pp. 73-74, 2009, DOI:10.3970/icces.2009.012.073

    Abstract Due to the limitation of fabrication technologies nowadays, initial defects in carbon nanotubes (CNTs) are inevitably perceived particularly during the manufacturing process or chemical treatment. The investigation of the effects of initial defects existing in CNTs on their mechanical properties and fracture behaviors becomes essential for their potentiality in engineering applications.
    In this study, the defect effects, including number in percentage, type, and location, are explored using the molecular dynamics (MD) simulation with Tersoff Brenner potential. Results show that the mechanical properties, such as the elastic modulus, failure strength and strain, are strongly affected by the defects. Moreover, the distribution… More >

  • Open Access

    ABSTRACT

    Influences of Nano-sized Crystalline Particles on the Mechanical Properties of Metallic Glass-- A Molecular Dynamics Study

    R. Matsumoto1, N. Miyazaki1, M. Nakagaki2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.4, No.4, pp. 223-230, 2007, DOI:10.3970/icces.2007.004.223

    Abstract The mechanical properties of amorphous metals and metallic glasses are remarkably changed by precipitated crystalline particles. In this paper, the effects of crystal particle size and volume fraction on the flow stress of the metallic glass are evaluated by molecular dynamics simulations. The investigated volume fraction ranges from 0% (metallic glass) to 100% (nanocrystalline metal), and the average particle diameter ranges from 1nm to 12nm. It is revealed that the dispersed particle effects on the flow stress are very small in the entire volume fraction range when the average particle diameter is smaller than 3 nm, and the flow stress… More >

  • Open Access

    ARTICLE

    Mechanical Properties of Polypropylene Composites Reinforced with Macadamia Nutshell Fibers

    Joyce de P. Cipriano2, N. C. Zanini1, I. R. Dantas1, D. R. Mulinari1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 1047-1053, 2019, DOI:10.32604/jrm.2019.00001

    Abstract The use of natural fibers as an additive in polymeric matrices has attracted interest of the automotive industries, for its low cost, mechanical properties, biodegradability and lightness. However, the hydrophilic nature of the fiber makes polymer compatibility difficult. Fiber surface treatments can be used to enhance the fiber/matrix interface. In the present work, polypropylene (PP) composites reinforced with fibers from macadamia nutshell were obtained and characterized. Macadamia nutshell fibers were treated by an alkaline treatment with sodium hydroxide (NaOH 4%) to improve adhesion between fibers and matrix. Fibers were characterized by techniques of Scanning Electron Microscopy (SEM) and X-Ray Diffraction… More >

  • Open Access

    ARTICLE

    Evaluation of Mechanical Properties of Cross-Laminated Timber with Different Lay-ups Using Japanese Larch

    Yingchun Gong1,#,*, Fenglu Liu2,#, Zhaopeng Tian1, Guofang Wu1, Haiqing Ren1, Cheng Guan2

    Journal of Renewable Materials, Vol.7, No.10, pp. 941-956, 2019, DOI:10.32604/jrm.2019.07354

    Abstract Japanese larch is one of the main plantation tree species in China. A lack of engineered wood products made by Japanese larch , limits its application in wood structures. In this study, based on optimum process para meters, such as pressure (1.2 MPa), adhesive spread rate (200 g/m 2 ) and adhesive (one component polyurethane), the mechanical properties of Japanese larch made cross laminated timber ( with different lay ups were evaluated by means of the static method . Results of this study show ed that variations in lay ups significant ly affected the mechanical properties of CLT. The strength… More >

  • Open Access

    ARTICLE

    Biocompatible Blends Based on Poly (Vinyl Alcohol) and Solid Organic Waste

    Antonio Greco*, Francesca Ferrari, Raffaella Striani, Carola Esposito Corcione

    Journal of Renewable Materials, Vol.7, No.10, pp. 1023-1035, 2019, DOI:10.32604/jrm.2019.07778

    Abstract This work is aimed at the development of new green composite materials through the incorporation of the solid organic waste (SOW) in a thermoplastic matrix. After being ground, the organic waste was exposed to a sterilization process, though an autoclave cycle, in order to obtain a complete removal of the bacterial activity. The SOW was found to have a high amount of water, about 65-70%, which made uneconomical its further treatment to reduce the water amount. Therefore, a water soluble polymer, poly (vinyl alcohol) (PVA) was chosen in order to produce SOW based blends. However, in order to reduce the… More >

  • Open Access

    ARTICLE

    Study on Toughening Phenolic Foams in Phosphorus-Containing Tung Oil-Based Derivatives

    Fei Song1, Puyou Jia1,*, Yanan Xiao2, Caiying Bo1, Lihong Hu1, Yonghong Zhou1,*

    Journal of Renewable Materials, Vol.7, No.10, pp. 1011-1021, 2019, DOI:10.32604/jrm.2019.08044

    Abstract Phenolic foams (PFs) as thermal insulation material with outstanding flame retardancy are required to match society’s ever expanding safety expectations; however, a trade off exists between flame retardancy and toughness. Here, for the first time, we synthesized a novel reactive phosphorus containing tung oil based derivative and used it to toughen PF, resulting in PFs with a combination of excellent mechanical properties and flame retardancy. Compared with pure PF, the modified PFs exhibit enhanced mechanical properties, with specific compressive and flexural strengths as high as 5.67 MPa and 12.46 MPa, which represent increases of 90.67% and 178.7% over those of… More >

  • Open Access

    ARTICLE

    Zinc Oxide Nano Particles Integrated Kenaf/Unsaturated Polyester BioComposite

    Mohammed Mohammed1, Bashir O. Betar2, Rozyanty Rahman1, Aeshah M. Mohammed3, Azlin F. Osman1, Muhammed Jaafar4, Tijjani Adam5,*, Omar S. Dahham5, Uda Hashim6, Nik Z. Noriman5

    Journal of Renewable Materials, Vol.7, No.10, pp. 967-982, 2019, DOI:10.32604/jrm.2019.07562

    Abstract Increasing need for materials with special features have brought various new inventions, one of the most promising hope for new material with special features and functionalities is composites materials. Thus, this study report an integration of zinc nanoparticles into kenaf/polyester polymer composite to introduce new behavior to the composite. The composite behaviors were compared for mechanical, thermal, moisture absorption and biodegradability properties. Prepared Zinc Oxide nanoparticles entrenched in the kenaf/polyestaer composites net structure through chemical bonds between kenaf/ZnO/polyester resin, existence of ZnO significantly influence the mechanical and thermals properties of composites. Thermal analysis based on (TGA) response revealed the integration… More >

  • Open Access

    ARTICLE

    Hygrothermal/UV Aging Effect on Visual Aspect and Mechanical Properties of Non-Woven Natural-Fiber Composites

    Daniel Scida1,*, Sébastien Alix1, Stéphane Buet1, El Hadi Saidane1, François Courmont1,2, Karim Behlouli2, Rezak Ayad1

    Journal of Renewable Materials, Vol.7, No.9, pp. 865-875, 2019, DOI:10.32604/jrm.2019.06609

    Abstract This work aims at studying the effect of hygrothermal and UV cyclic aging on the tensile properties and esthetic characteristics of non-woven composites. The composite materials were thermo-compressed from non-woven mats made up of PP and flax or kenaf fibers. This works included evaluating the change in color appearance and analyzing the variations in tensile properties and damage mechanisms, depending on the aging time. The presence of the UV protection film on the composite surface showed its effectiveness against aging. From visual observations and measurement of colorimetric parameters, it has been proved effective in the reduction of the bleaching and… More >

  • Open Access

    ARTICLE

    Effect of Stacking Sequences on the Mechanical and Damping Properties of Flax Glass Fiber Hybrid

    Khouloud Cheour1,*, Mustapha Assarar1, Daniel Scida1, Rezak Ayad1, Xiaolu Gong2

    Journal of Renewable Materials, Vol.7, No.9, pp. 877-889, 2019, DOI:10.32604/jrm.2019.06826

    Abstract The aim of this study is to show the interest of the mechanical and dynamical properties of glass-flax hybrid composites. Therefore, various staking sequences of glass-flax hybrid composites were manufactured and tested in free vibrations. The damping coefficients were identified by fitting the experimental responses of free-free bending vibrations. The obtained results show that the staking sequences and the position of flax fiber layers in the hybrid composites changed the properties, so a classification of different stacking sequences was established. In fact, the hybrid laminate made of two glass external layers placed on both sides of four flax layers is… More >

Displaying 151-160 on page 16 of 225. Per Page