Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (224)
  • Open Access

    ARTICLE

    Chitosan/Nanocrystalline Cellulose Biocomposites Based on Date Palm (Phoenix Dactylifera L.) Sheath Fibers

    Abeer M. Adel1, Amira M. El-Shafei2, Atef A. Ibrahim1, Mona T. Al-Shemy1,*

    Journal of Renewable Materials, Vol.7, No.6, pp. 567-582, 2019, DOI:10.32604/jrm.2019.00034

    Abstract In this study, nanocrystalline celluloses were used to enhance physical, mechanical and water vapor barrier properties of chitosan films for potential food packaging applications. Two different mineral acids (sulfuric and phosphoric) were used to extract nanocrystalline cellulose from date palm sheath fibers. The influence of cellulose I and cellulose II on the properties of the isolated nanocrystalline celluloses (e.g., yield, energy and length of intra- and intermolecular hydrogen bonds, and degree of substitution) were studied too. The characteristics of chitosan biocomposite film with phosphorylated nanocrystalline cellulose were compared to those with sulfated nanocrystalline cellulose. Results showed that besides cellulose polymorphism,… More >

  • Open Access

    ARTICLE

    Poly (Butylene Adipate-Co-Terephthalate) and Poly (Ɛ-Caprolactone) and Their Bionanocomposites with Cellulose Nanocrystals: Thermo-Mechanical Properties and Cell Viability Study

    Marcia Cristina Branciforti1,*, Caroline Faria Bellani2, Carolina Lipparelli Morelli2, Alice Ferrand3, Nadia Benkirane-Jessel3, Rosario Elida Suman Bretas2

    Journal of Renewable Materials, Vol.7, No.3, pp. 269-277, 2019, DOI:10.32604/jrm.2019.01833

    Abstract Although nanocomposites have recently attracted special interest in the tissue engineering area, due to their potential to reinforce scaffolds for hard tissues applications, a number of variables must be set prior to any clinical application. This manuscript addresses the evaluation of thermo-mechanical properties and of cell proliferation of cellulose nanocrystals (CNC), poly(butylene adipate-co-terephthalate) (PBAT), poly(ε-caprolactone) (PCL) films and their bionanocomposites with 2 wt% of CNC obtained by casting technique. Cellulose nanocrystals extracted from Balsa wood by acid hydrolysis were used as a reinforcing phase in PBAT and PCL matrix films. The films and pure CNC at different concentrations were cultured… More >

  • Open Access

    ARTICLE

    Effect of Recycling Cycles on the Mechanical and Damping Properties of Short Alfa Fibre Reinforced Polypropylene Composite

    Fatima Ezzahra El Abbassi1,*, Mustapha Assarar2, Rezak Ayad2, Hamid Sabhi2, Stephane Buet2, Nouzha Lamdouar3

    Journal of Renewable Materials, Vol.7, No.3, pp. 253-267, 2019, DOI:10.32604/jrm.2019.01759

    Abstract This paper aims at studying the effect of recycling on the static and dynamic properties of short alfa fibre reinforced polypropylene. For this purpose, alfa fibres reinforced composites were elaborated by an injection moulding process and were subjected to different mechanical recycling cycles. Then, non-recycled and recycled materials were subjected to static tests and Dynamic Mechanical Analysis (DMA) to evaluate the effect of recycling on their behaviour. Besides, the effects of alkali and salt water treatments on the static and dynamic properties of the alfa composite were also investigated. The obtained results show that tensile and flexural properties of alfa… More >

  • Open Access

    ARTICLE

    Thermal and Mechanical Properties of Thermoplastic Starch and Poly(Vinyl Alcohol-Co-Ethylene) Blends

    Ana Clara Lancarovici Alves, Rafael Grande, Antonio José Felix Carvalho*

    Journal of Renewable Materials, Vol.7, No.3, pp. 245-252, 2019, DOI:10.32604/jrm.2019.00833

    Abstract The interest in thermoplastic starch (TPS) as a substitute material to replace conventional thermoplastics continues especially due its biodegradability, availability, low cost and because it is obtained from renewable sources. However, its poor mechanical properties and its high sensitivity to humidity have limited its use in several applications. Here, the copolymer poly (ethylene-co-vinyl alcohol) (EVOH), with two different ethylene contents, 27 and 44 mol% were blended with TPS by extrusion in order to overcome these limitations. The obtained blends were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mechanical tensile testing, Scanning Electron Microscopy (SEM) and moisture absorption test.… More >

  • Open Access

    ARTICLE

    Effect of Poly(ε-caprolactone-b-tetrahydrofuran) Triblock Copolymer Concentration on Morphological, Thermal and Mechanical Properties of Immiscible PLA/PCL Blends

    Paula do Patrocínio Dias, Marcelo Aparecido Chinelatto*

    Journal of Renewable Materials, Vol.7, No.2, pp. 129-138, 2019, DOI:10.32604/jrm.2019.00037

    Abstract In this study a low molecular weight triblock copolymer derived from ε-caprolactone and tetrahydrofuran was used as a non-reactive compatibilizer of immiscible PLA/PCL blends. Ternary blends with 0, 1.5 wt%, 3 wt% and 5 wt% copolymer and about 75 wt% PLA were prepared by single screw extrusion and characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and Izod impact testing. SEM micrographs showed that the size of the dispersed PCL domains was practically constant regardless of copolymer concentration. This result can be explained by the low shear rate employed during processing step and… More >

  • Open Access

    ARTICLE

    Structure and Properties of Polyamide 11 Nanocomposites Filled with Fibrous Palygorskite Clay

    B. Benobeidallah1, A. Benhamida1, A. Dorigato2,*, A. Sola3, M. Messori3, A. Pegoretti2

    Journal of Renewable Materials, Vol.7, No.1, pp. 89-102, 2019, DOI:10.32604/jrm.2019.00136

    Abstract Various amounts (up to 10 wt%) of palygorskite nanofibers functionalized by 3-aminopropyltriethoxysilane (APTES) coupling agent were used to reinforce polyamide 11 nanocomposites prepared by melt compounding. The covalent bonding of the silane on the palygorskite surface was confirmed by infrared spectroscopy and thermogravimetric analysis. X-ray diffraction revealed the retention of the α-form of polyamide crystals upon the addition of both natural and silane treated palygorskite nanorods. All the investigated nanocomposites showed an improvement of the thermal stability, especially when surface treated palygorskite nanofibers were considered. Tensile tests and dynamic mechanical thermal analyses on the prepared materials evidenced how the incorporation… More >

  • Open Access

    ARTICLE

    Novel Membranes Regenerated from Blends of Cellulose/Gluten Using Ethylenediamine/Potassium Thiocyanate Solvent System

    Yang Yu1, Ramiz Boy1,2,*, Richard Kotek1

    Journal of Renewable Materials, Vol.7, No.1, pp. 41-55, 2019, DOI:10.32604/jrm.2019.00105

    Abstract Current industrial methods for dissolution of cellulose in making regenerated cellulose products are relatively expensive, toxic and dangerous and have environmental problems coming with the hazard chemical wastes. To solve these problems, a novel ethylenediamine and potassium thiocyanate (ED/KSCN) solvent system was developed, that is economical, ecofriendly, and highly efficient. The ED/KSCN solvent system was proven to be a suitable solvent for fabricating cellulose (blended with other polymers) membranes. In this study, gluten was used to develop nonporous membranes with cellulose. The method of casting these membranes provided better ones than the former researchers’ techniques. These composite membranes’ physical and… More >

  • Open Access

    ARTICLE

    Effects of Processing Parameters on Mechanical Properties and Structure of Banana Fiber-Reinforced Composites

    Dan-Thuy Van-Pham1,*, Minh Tri Nguyen1, Chanh-Nghiem Nguyen2, Thi Truc Duyen Le1, Thi Yen Nhu Pham1, Khai Thinh Nguyen2, Yukihiro Nishikawa3, Qui Tran-Cong-Miyata3

    Journal of Renewable Materials, Vol.6, No.6, pp. 662-670, 2018, DOI:10.7569/JRM.2018.634107

    Abstract The mechanical properties of unidirectional natural fiber-reinforced composites are generally affected by several processing parameters during compression molding. This study investigates the effects of processing temperature, time, and pressure on the tensile and flexural properties of acrylonitrile butadiene styrene reinforced by banana fibers. X-ray CT imaging was employed to find the relationship between the mechanical properties and structure of the processed composite. Besides, the water absorption of composites was observed and the way in which the mechanical properties evolved after water absorption was analyzed. The tensile and flexural properties of the unidirectional banana fiber-reinforced composite were found to be inversely… More >

  • Open Access

    ARTICLE

    A New Fast Multipole Boundary Element Method for Large Scale Analysis of Mechanical Properties in 3D Particle-Reinforced Composites

    Haitao Wang1, Zhenhan Yao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 85-96, 2005, DOI:10.3970/cmes.2005.007.085

    Abstract This paper addresses a new boundary element method (BEM) for the numerical analysis of mechanical properties in 3D particle-reinforced composites. The BEM is accelerated by a new version fast multipole method (FMM) in order to perform large scale simulation of a representative volume element (RVE) containing up to several hundred randomly distributed elastic spherical particles on only one personal computer. The maximum number of degrees of freedom (DOF) reaches more than 300,000. Efficiency of the developed new version fast multipole BEM code is evaluated compared with other conventional solutions for BEM. The effects of micro-structural parameters, namely the particle size,… More >

  • Open Access

    ARTICLE

    Ultrathin Wood Laminae–Thermoplastic Starch Biodegradable Composites

    Andrea Dorigato1,*, Martino Negri2, Alessandro Pegoretti1,*

    Journal of Renewable Materials, Vol.6, No.5, pp. 493-503, 2018, DOI:10.7569/JRM.2017.634177

    Abstract Novel fully biodegradable thermoplastic composite laminates reinforced with ultrathin wood laminae were prepared through a hot-pressing process by using two different thermoplastic starch (TPS) matrices. The microstructure and physical properties of the resulting unidirectional and bidirectional laminates were studied. The investigated materials presented a complex microstructure, in which the porosity of the wood laminae was almost entirely occluded by the polymer matrix. The mechanical behavior of the laminates was strongly affected by the obtained microstructure, and matrix penetration in wood pores led to biodegradable composites with elastic modulus and tensile strength higher than those of their constituents. Finally, thermal welding… More >

Displaying 161-170 on page 17 of 224. Per Page