Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,082)
  • Open Access

    ARTICLE

    Prediction of Cuttings-Induced Annular-Pressure Loss in Extended-Reach Wells

    Long Wang1, Qingyun Shen1, Gui Wang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2877-2890, 2023, DOI:10.32604/fdmp.2023.029206

    Abstract Drill cuttings are broken bits of solid material removed from a borehole drilled by rotary, percussion, or auger methods and brought to the surface in the drilling mud. When these cuttings enter the annulus, they have an effect on the drilling fluid rheology and density, which is, in general, quite difficult to evaluate. By introducing an empirical correlation for the rheological properties of cuttings-laden drilling fluids, this study proposes a pressure-loss prediction method for an extended-reach well (ERW). After verifying the accuracy of this method, a case study is considered and a sensitivity analysis is conducted assuming a yield-power law… More >

  • Open Access

    PROCEEDINGS

    Multiscale Modelling of Normal Fault Rupture-Soil-Foundation Interaction

    Lifan Chen1,*, Ning Guo1, Zhongxuan Yang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09709

    Abstract A multiscale approach [1] that couples the finite-element method (FEM) and the discrete-element method (DEM) is employed to model and analyse the earthquake fault rupture-soil-foundation interaction (FR-SFI) problem. In the approach, the soil constitutive responses are obtained from DEM solutions of representative volume elements (RVEs) embedded at the FEM integration points so as to effectively bypass the phenomenological hypotheses in conventional FEM simulations. The fault rupture surfaces and shear localization patterns under normal faults with or without foundation atop have been well captured by the multiscale approach and verified with available centrifuge experimental [2] and numerical results [3]. By examining… More >

  • Open Access

    PROCEEDINGS

    Fracture of Soft Materials with Interfaces: Phase Field Modeling Based on Hybrid ES-FEM/FEM

    Shuyu Chen1,*, Jun Zeng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09672

    Abstract The engineering application prospects of soft materials in key areas such as aerospace and life science have stimulated extensive research interests in the academic community. An important topic here is to predict the service and failure behavior of such materials. Although considerable progress has been made, realworld application scenarios usually involve bi-material as well as multi-material adhesion, with cohesive interface rupture as the main failure vehicle. Inconsistent asymptotic solutions in the context of large deformations pose obstacles to the establishment of a theoretical framework for the interface fracture problem in soft materials [1]. Driven by both engineering and academia, numerical… More >

  • Open Access

    PROCEEDINGS

    Broadband Electromagnetic Scattering Analysis with Isogeometric Boundary Element Method Accelerated by Frequency-Decoupling and Model Order Reduction Techniques

    Yujing Ma1, Zhongwang Wang2, Xiaohui Yuan1, Leilei Chen2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-2, 2023, DOI:10.32604/icces.2023.09662

    Abstract The paper presents a novel fast calculation method for broadband Electromagnetic Scattering analysis. In this work, the isogeometric boundary element method is used to solve Helmholtz equations for the electromagnetic scattering problems. The non-uniform rational B-splines are employed to construct structural geometries and discretize electric and magnetic field integral equations [1,2]. To avoid timeconsuming multi-frequency calculations, the series expansion method is used to decouple the frequencydependent terms from the integrand in the boundary element method [3,4]. The second-order Arnoldi (SOAR) method is applied to construct a reduced-order model that retains the essential structures and key properties of the original model… More >

  • Open Access

    PROCEEDINGS

    Oscillations of Rapid Fracture in Phase Field Modeling

    Jun Zeng1, Fucheng Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09636

    Abstract Instability in dynamic fracture suppresses crack velocity from reaching theoretical limit predicted by the classical linear elastic fracture mechanics (LEFM). In thin systems, crack can accelerate to near the theoretical limiting velocity without micro-branching instability. A dynamic oscillatory instability is observed at such extreme crack speed. This sinusoidal oscillation was further found to be governed by intrinsic nonlinear scale. Using a dynamic phase-field model (PFM) with no attenuation of wave speed, we successfully reproduce the oscillations in the framework of non-linear deformation. The used PFM model based on Griffith's theory and derived from the nonconservative Lagrange's equation. To deal with… More >

  • Open Access

    PROCEEDINGS

    Uncovering the Intrinsic Deficiencies of Phase-Field Modeling for Dynamic Fracture

    Jiale Ji1,*, Mengnan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09632

    Abstract The phase-field fracture (PFF) approach has achieved great triumphs in modeling quasi-static fracture. Nevertheless, its reliability in serving dynamic fractures still leaves something to be desired, such as the prediction of the limiting crack velocity. Using a pre-strained fracture configuration, we discovered a disturbing phenomenon that the crack limiting speed identified by the dynamic PFF model is not related to the specific material, which seriously deviates from the experimental observation. To ascertain the truth, we first ruled out the correlation between the limiting crack velocity on the phase-field characteristic scale and external loading. Afterward, by switching between different crack surface… More >

  • Open Access

    ARTICLE

    Intelligent Fish Behavior Classification Using Modified Invasive Weed Optimization with Ensemble Fusion Model

    B. Keerthi Samhitha*, R. Subhashini

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3125-3142, 2023, DOI:10.32604/iasc.2023.040643

    Abstract Accurate and rapid detection of fish behaviors is critical to perceive health and welfare by allowing farmers to make informed management decisions about recirculating the aquaculture system while decreasing labor. The classic detection approach involves placing sensors on the skin or body of the fish, which may interfere with typical behavior and welfare. The progress of deep learning and computer vision technologies opens up new opportunities to understand the biological basis of this behavior and precisely quantify behaviors that contribute to achieving accurate management in precision farming and higher production efficacy. This study develops an intelligent fish behavior classification using… More >

  • Open Access

    ARTICLE

    A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network

    Ali Ahmadi Shahrakht1, Parisa Hajirahimi2, Omid Rostami3, Diego Martín4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3059-3081, 2023, DOI:10.32604/iasc.2023.040502

    Abstract As the internet of things (IoT) continues to expand rapidly, the significance of its security concerns has grown in recent years. To address these concerns, physical unclonable functions (PUFs) have emerged as valuable tools for enhancing IoT security. PUFs leverage the inherent randomness found in the embedded hardware of IoT devices. However, it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches. In this paper, a new deep learning (DL)-based modeling attack is introduced to break the resistance of complex XAPUFs. Because training DL models is a problem that falls under the category of NP-hard… More >

  • Open Access

    ARTICLE

    State Accurate Representation and Performance Prediction Algorithm Optimization for Industrial Equipment Based on Digital Twin

    Ying Bai1,*, Xiaoti Ren2, Hong Li1

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2999-3018, 2023, DOI:10.32604/iasc.2023.040124

    Abstract The combination of the Industrial Internet of Things (IIoT) and digital twin (DT) technology makes it possible for the DT model to realize the dynamic perception of equipment status and performance. However, conventional digital modeling is weak in the fusion and adjustment ability between virtual and real information. The performance prediction based on experience greatly reduces the inclusiveness and accuracy of the model. In this paper, a DT-IIoT optimization model is proposed to improve the real-time representation and prediction ability of the key equipment state. Firstly, a global real-time feedback and the dynamic adjustment mechanism is established by combining DT-IIoT… More >

  • Open Access

    ARTICLE

    A Sketch-Based Generation Model for Diverse Ceramic Tile Images Using Generative Adversarial Network

    Jianfeng Lu1,*, Xinyi Liu1, Mengtao Shi1, Chen Cui1,2, Mahmoud Emam1,3

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2865-2882, 2023, DOI:10.32604/iasc.2023.039742

    Abstract Ceramic tiles are one of the most indispensable materials for interior decoration. The ceramic patterns can’t match the design requirements in terms of diversity and interactivity due to their natural textures. In this paper, we propose a sketch-based generation method for generating diverse ceramic tile images based on a hand-drawn sketches using Generative Adversarial Network (GAN). The generated tile images can be tailored to meet the specific needs of the user for the tile textures. The proposed method consists of four steps. Firstly, a dataset of ceramic tile images with diverse distributions is created and then pre-trained based on GAN.… More >

Displaying 21-30 on page 3 of 3082. Per Page