Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (248)
  • Open Access

    ARTICLE

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

    Shuoting Xiao1,*, Nikita Igorevich Fomin1, Kirill Anatolyevich Khvostunkov2, Chong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2821-2847, 2025, DOI:10.32604/cmes.2025.071961 - 23 December 2025

    Abstract Precast concrete structures have gained popularity due to their advantages. However, the seismic performance of their connection joints remains an area of ongoing research and improvement. Grouted Sleeve Connection (GSC) offers a solution for connecting reinforcements in precast components, but their vulnerability to internal defects, such as construction errors and material variability, can significantly impact performance. This article presents a finite element analysis (FEA) to evaluate the impact of internal grouting defects in GSC on the structural performance of precast reinforced concrete columns. Four finite element models representing GSC with varying degrees of defects were… More > Graphic Abstract

    Finite Element Analysis of the Influence of End Grouting Defects in Grouted Sleeve on the Structural Performance of Precast Reinforced Concrete Columns

  • Open Access

    ARTICLE

    Optimization of Cement-Based Slurry Mix Design Incorporating Silica Fume for Enhanced Setting and Strength Performance

    Ke Li1, Bendong Liu1, Yulong Han2, Yafeng Zhang3, Chunqi Yang1, Dawei Yin2, Yazhou Zhang3, Wantao Ding4,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2779-2793, 2025, DOI:10.32604/fdmp.2025.072671 - 01 December 2025

    Abstract Traditional cement-based slurries are often constrained by excessive cement consumption, prolonged setting times, and limited controllability, which hinder their broader engineering applications. To overcome these challenges, this study focuses on optimizing ordinary cement-based slurry through the incorporation of targeted additives and rational adjustment of mix proportions, with the aim of developing a rapid-setting, early-strength cementitious system. In particular, a series of comparative and orthogonal experiments were conducted to systematically examine the evolution of the slurry’s macroscopic properties. In addition, the response surface methodology (RSM) was introduced to reveal the interaction mechanisms among key parameters, thereby… More >

  • Open Access

    ARTICLE

    AI-Driven SDN and Blockchain-Based Routing Framework for Scalable and Trustworthy AIoT Networks

    Mekhled Alharbi1,*, Khalid Haseeb2, Mamoona Humayun3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2601-2616, 2025, DOI:10.32604/cmes.2025.073039 - 26 November 2025

    Abstract Emerging technologies and the Internet of Things (IoT) are integrating for the growth and development of heterogeneous networks. These systems are providing real-time devices to end users to deliver dynamic services and improve human lives. Most existing approaches have been proposed to improve energy efficiency and ensure reliable routing; however, trustworthiness and network scalability remain significant research challenges. In this research work, we introduce an AI-enabled Software-Defined Network (SDN)- driven framework to provide secure communication, trusted behavior, and effective route maintenance. By considering multiple parameters in the forwarder selection process, the proposed framework enhances network More >

  • Open Access

    ARTICLE

    Real-Time and Energy-Aware UAV Routing: A Scalable DAR Approach for Future 6G Systems

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4667-4686, 2025, DOI:10.32604/cmc.2025.070173 - 23 October 2025

    Abstract The integration of the dynamic adaptive routing (DAR) algorithm in unmanned aerial vehicle (UAV) networks offers a significant advancement in addressing the challenges posed by next-generation communication systems like 6G. DAR’s innovative framework incorporates real-time path adjustments, energy-aware routing, and predictive models, optimizing reliability, latency, and energy efficiency in UAV operations. This study demonstrated DAR’s superior performance in dynamic, large-scale environments, proving its adaptability and scalability for real-time applications. As 6G networks evolve, challenges such as bandwidth demands, global spectrum management, security vulnerabilities, and financial feasibility become prominent. DAR aligns with these demands by offering More >

  • Open Access

    ARTICLE

    Performance Evaluation of Dynamic Adaptive Routing (DAR) for Unmanned Aerial Vehicle (UAV) Networks

    Khadija Slimani1,2,*, Samira Khoulji2, Hamed Taherdoost3,4, Mohamed Larbi Kerkeb5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4115-4132, 2025, DOI:10.32604/cmc.2025.066544 - 23 September 2025

    Abstract Reliable and efficient communication is essential for Unmanned Aerial Vehicle (UAV) networks, especially in dynamic and resource-constrained environments such as disaster management, surveillance, and environmental monitoring. Frequent topology changes, high mobility, and limited energy availability pose significant challenges to maintaining stable and high-performance routing. Traditional routing protocols, such as Ad hoc On-Demand Distance Vector (AODV), Load-Balanced Optimized Predictive Ad hoc Routing (LB-OPAR), and Destination-Sequenced Distance Vector (DSDV), often experience performance degradation under such conditions. To address these limitations, this study evaluates the effectiveness of Dynamic Adaptive Routing (DAR), a protocol designed to adapt routing decisions… More >

  • Open Access

    ARTICLE

    An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty

    Manuel J. C. S. Reis*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3023-3039, 2025, DOI:10.32604/cmc.2025.066390 - 23 September 2025

    Abstract The Vehicle Routing Problem with Time Windows (VRPTW) presents a significant challenge in combinatorial optimization, especially under real-world uncertainties such as variable travel times, service durations, and dynamic customer demands. These uncertainties make traditional deterministic models inadequate, often leading to suboptimal or infeasible solutions. To address these challenges, this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms (GA) with Local Search (LS), while incorporating stochastic uncertainty modeling through probabilistic travel times. The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance. This adaptivity enhances the algorithm’s… More >

  • Open Access

    REVIEW

    Grouting Flow in Deep Fractured Rock: A State-of-the-Art Review of Theory and Practice

    Xuewei Liu1,2, Jinze Sun1,2, Bin Liu1,2,*, Yongshui Kang1,2, Yongchao Tian3, Yuan Zhou1,2, Quansheng Liu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.8, pp. 2047-2073, 2025, DOI:10.32604/fdmp.2025.068268 - 12 September 2025

    Abstract Grouting is a widely applied technique for reinforcing fractured zones in deep soft rock tunnels. By infiltrating rock fissures, slurry materials enhance structural integrity and improve the overall stability of the surrounding rock. The performance of grouting is primarily governed by the flow behavior and diffusion extent of the slurry. This review considers recent advances in the theory and methodology of slurry flow and diffusion in fractured rock. It examines commonly used grout materials, including cement-based, chemical, and composite formulations, each offering distinct advantages for specific geological conditions. The mechanisms of reinforcement vary significantly across… More >

  • Open Access

    ARTICLE

    AGV Scheduling and Bidirectional Conflict-Free Routing Problem with Battery Swapping in Automated Container Terminals

    He Huang, Jin Zhu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1717-1748, 2025, DOI:10.32604/cmes.2025.068384 - 31 August 2025

    Abstract Automated guided vehicles (AGVs) are key equipment in automated container terminals (ACTs), and their operational efficiency can be impacted by conflicts and battery swapping. Additionally, AGVs have bidirectional transportation capabilities, allowing them to move in the opposite direction without turning around, which helps reduce transportation time. This paper aims at the problem of AGV scheduling and bidirectional conflict-free routing with battery swapping in automated terminals. A bi-level mixed integer programming (MIP) model is proposed, taking into account task assignment, bidirectional conflict-free routing, and battery swapping. The upper model focuses on container task assignment and AGV… More >

  • Open Access

    ARTICLE

    Adaptive Relay-Assisted WBAN Protocol: Enhancing Energy Efficiency and QoS through Advanced Multi-Criteria Decision-Making

    Surender Singh1,2,*, Naveen Bilandi1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 489-509, 2025, DOI:10.32604/cmes.2025.065101 - 31 July 2025

    Abstract Wireless Body Area Network (WBAN) is essential for continuous health monitoring. However, they face energy efficiency challenges due to the low power consumption of sensor nodes. Current WBAN routing protocols face limitations in strategically minimizing energy consumption during the retrieval of vital health parameters. Efficient network traffic management remains a challenge, with existing approaches often resulting in increased delay and reduced throughput. Additionally, insufficient attention has been paid to enhancing channel capacity to maintain signal strength and mitigate fading effects under dynamic and robust operating scenarios. Several routing strategies and procedures have been developed to… More >

  • Open Access

    ARTICLE

    Incorporating Fully Fuzzy Logic in Multi-Objective Transshipment Problems: A Study of Alternative Path Selection Using LR Flat Fuzzy Numbers

    Vishwas Deep Joshi1, Priya Agarwal1, Lenka Čepová2, Huda Alsaud3, Ajay Kumar4,*, B. Swarna5, Ashish Kumar6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 969-1011, 2025, DOI:10.32604/cmes.2025.063996 - 31 July 2025

    Abstract In a world where supply chains are increasingly complex and unpredictable, finding the optimal way to move goods through transshipment networks is more important and challenging than ever. In addition to addressing the complexity of transportation costs and demand, this study presents a novel method that offers flexible routing alternatives to manage these complexities. When real-world variables such as fluctuating costs, variable capacity, and unpredictable demand are considered, traditional transshipment models often prove inadequate. To overcome these challenges, we propose an innovative fully fuzzy-based framework using LR flat fuzzy numbers. This framework allows for more… More >

Displaying 1-10 on page 1 of 248. Per Page