Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (166)
  • Open Access

    ARTICLE

    A Latency-Efficient Integration of Channel Attention for ConvNets

    Woongkyu Park1, Yeongyu Choi2, Mahammad Shareef Mekala3, Gyu Sang Choi1, Kook-Yeol Yoo1, Ho-youl Jung1,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 3965-3981, 2025, DOI:10.32604/cmc.2025.059966 - 06 March 2025

    Abstract Designing fast and accurate neural networks is becoming essential in various vision tasks. Recently, the use of attention mechanisms has increased, aimed at enhancing the vision task performance by selectively focusing on relevant parts of the input. In this paper, we concentrate on squeeze-and-excitation (SE)-based channel attention, considering the trade-off between latency and accuracy. We propose a variation of the SE module, called squeeze-and-excitation with layer normalization (SELN), in which layer normalization (LN) replaces the sigmoid activation function. This approach reduces the vanishing gradient problem while enhancing feature diversity and discriminability of channel attention. In… More >

  • Open Access

    ARTICLE

    CAMSNet: Few-Shot Semantic Segmentation via Class Activation Map and Self-Cross Attention Block

    Jingjing Yan1, Xuyang Zhuang2,*, Xuezhuan Zhao1,2, Xiaoyan Shao1,*, Jiaqi Han1

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5363-5386, 2025, DOI:10.32604/cmc.2025.059709 - 06 March 2025

    Abstract The key to the success of few-shot semantic segmentation (FSS) depends on the efficient use of limited annotated support set to accurately segment novel classes in the query set. Due to the few samples in the support set, FSS faces challenges such as intra-class differences, background (BG) mismatches between query and support sets, and ambiguous segmentation between the foreground (FG) and BG in the query set. To address these issues, The paper propose a multi-module network called CAMSNet, which includes four modules: the General Information Module (GIM), the Class Activation Map Aggregation (CAMA) module, the… More >

  • Open Access

    ARTICLE

    Learning Temporal User Features for Repost Prediction with Large Language Models

    Wu-Jiu Sun1, Xiao Fan Liu1,2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4117-4136, 2025, DOI:10.32604/cmc.2025.059528 - 06 March 2025

    Abstract Predicting information dissemination on social media, specifically users’ reposting behavior, is crucial for applications such as advertising campaigns. Conventional methods use deep neural networks to make predictions based on features related to user topic interests and social preferences. However, these models frequently fail to account for the difficulties arising from limited training data and model size, which restrict their capacity to learn and capture the intricate patterns within microblogging data. To overcome this limitation, we introduce a novel model Adapt pre-trained Large Language model for Reposting Prediction (ALL-RP), which incorporates two key steps: (1)… More >

  • Open Access

    ARTICLE

    A Weakly Supervised Semantic Segmentation Method Based on Improved Conformer

    Xueli Shen, Meng Wang*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4631-4647, 2025, DOI:10.32604/cmc.2025.059149 - 06 March 2025

    Abstract In the field of Weakly Supervised Semantic Segmentation (WSSS), methods based on image-level annotation face challenges in accurately capturing objects of varying sizes, lacking sensitivity to image details, and having high computational costs. To address these issues, we improve the dual-branch architecture of the Conformer as the fundamental network for generating class activation graphs, proposing a multi-scale efficient weakly-supervised semantic segmentation method based on the improved Conformer. In the Convolution Neural Network (CNN) branch, a cross-scale feature integration convolution module is designed, incorporating multi-receptive field convolution layers to enhance the model’s ability to capture long-range… More >

  • Open Access

    ARTICLE

    Semantic Malware Classification Using Artificial Intelligence Techniques

    Eliel Martins1, Javier Bermejo Higuera2,*, Ricardo Sant’Ana1, Juan Ramón Bermejo Higuera2, Juan Antonio Sicilia Montalvo2, Diego Piedrahita Castillo3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 3031-3067, 2025, DOI:10.32604/cmes.2025.061080 - 03 March 2025

    Abstract The growing threat of malware, particularly in the Portable Executable (PE) format, demands more effective methods for detection and classification. Machine learning-based approaches exhibit their potential but often neglect semantic segmentation of malware files that can improve classification performance. This research applies deep learning to malware detection, using Convolutional Neural Network (CNN) architectures adapted to work with semantically extracted data to classify malware into malware families. Starting from the Malconv model, this study introduces modifications to adapt it to multi-classification tasks and improve its performance. It proposes a new innovative method that focuses on byte More >

  • Open Access

    ARTICLE

    Fine Tuned Hybrid Deep Learning Model for Effective Judgment Prediction

    G. Sukanya, J. Priyadarshini*

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2925-2958, 2025, DOI:10.32604/cmes.2025.060030 - 03 March 2025

    Abstract Advancements in Natural Language Processing and Deep Learning techniques have significantly propelled the automation of Legal Judgment Prediction, achieving remarkable progress in legal research. Most of the existing research works on Legal Judgment Prediction (LJP) use traditional optimization algorithms in deep learning techniques falling into local optimization. This research article focuses on using the modified Pelican Optimization method which mimics the collective behavior of Pelicans in the exploration and exploitation phase during cooperative food searching. Typically, the selection of search agents within a boundary is done randomly, which increases the time required to achieve global… More >

  • Open Access

    REVIEW

    A Survey on Enhancing Image Captioning with Advanced Strategies and Techniques

    Alaa Thobhani1,*, Beiji Zou1, Xiaoyan Kui1,*, Amr Abdussalam2, Muhammad Asim3, Sajid Shah3, Mohammed ELAffendi3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.3, pp. 2247-2280, 2025, DOI:10.32604/cmes.2025.059192 - 03 March 2025

    Abstract Image captioning has seen significant research efforts over the last decade. The goal is to generate meaningful semantic sentences that describe visual content depicted in photographs and are syntactically accurate. Many real-world applications rely on image captioning, such as helping people with visual impairments to see their surroundings. To formulate a coherent and relevant textual description, computer vision techniques are utilized to comprehend the visual content within an image, followed by natural language processing methods. Numerous approaches and models have been developed to deal with this multifaceted problem. Several models prove to be state-of-the-art solutions… More >

  • Open Access

    ARTICLE

    KD-SegNet: Efficient Semantic Segmentation Network with Knowledge Distillation Based on Monocular Camera

    Thai-Viet Dang1,*, Nhu-Nghia Bui1, Phan Xuan Tan2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2001-2026, 2025, DOI:10.32604/cmc.2025.060605 - 17 February 2025

    Abstract Due to the necessity for lightweight and efficient network models, deploying semantic segmentation models on mobile robots (MRs) is a formidable task. The fundamental limitation of the problem lies in the training performance, the ability to effectively exploit the dataset, and the ability to adapt to complex environments when deploying the model. By utilizing the knowledge distillation techniques, the article strives to overcome the above challenges with the inheritance of the advantages of both the teacher model and the student model. More precisely, the ResNet152-PSP-Net model’s characteristics are utilized to train the ResNet18-PSP-Net model. Pyramid… More >

  • Open Access

    ARTICLE

    Vector Extraction from Design Drawings for Intelligent 3D Modeling of Transmission Towers

    Ziqiang Tang1, Chao Han1, Hongwu Li1, Zhou Fan1, Ke Sun1, Yuntian Huang1, Yuhang Chen2, Chenxing Wang2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2813-2829, 2025, DOI:10.32604/cmc.2024.059094 - 17 February 2025

    Abstract Accurate vector extraction from design drawings is required first to automatically create 3D models from pixel-level engineering design drawings. However, this task faces the challenges of complicated design shapes as well as cumbersome and cluttered annotations on drawings, which interfere with the vector extraction heavily. In this article, the transmission tower containing the most complex structure is taken as the research object, and a semantic segmentation network is constructed to first segment the shape masks from the pixel-level drawings. Preprocessing and postprocessing are also proposed to ensure the stability and accuracy of the shape mask… More >

  • Open Access

    ARTICLE

    MG-SLAM: RGB-D SLAM Based on Semantic Segmentation for Dynamic Environment in the Internet of Vehicles

    Fengju Zhang1, Kai Zhu2,*

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2353-2372, 2025, DOI:10.32604/cmc.2024.058944 - 17 February 2025

    Abstract The Internet of Vehicles (IoV) has become an important direction in the field of intelligent transportation, in which vehicle positioning is a crucial part. SLAM (Simultaneous Localization and Mapping) technology plays a crucial role in vehicle localization and navigation. Traditional Simultaneous Localization and Mapping (SLAM) systems are designed for use in static environments, and they can result in poor performance in terms of accuracy and robustness when used in dynamic environments where objects are in constant movement. To address this issue, a new real-time visual SLAM system called MG-SLAM has been developed. Based on ORB-SLAM2,… More >

Displaying 1-10 on page 1 of 166. Per Page