Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (148)
  • Open Access

    ARTICLE

    A Model for Detecting Fake News by Integrating Domain-Specific Emotional and Semantic Features

    Wen Jiang1,2, Mingshu Zhang1,2,*, Xu'an Wang1,3, Wei Bin1,2, Xiong Zhang1,2, Kelan Ren1,2, Facheng Yan1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2161-2179, 2024, DOI:10.32604/cmc.2024.053762

    Abstract With the rapid spread of Internet information and the spread of fake news, the detection of fake news becomes more and more important. Traditional detection methods often rely on a single emotional or semantic feature to identify fake news, but these methods have limitations when dealing with news in specific domains. In order to solve the problem of weak feature correlation between data from different domains, a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed. This method makes full use of the attention mechanism, grasps the correlation between different… More >

  • Open Access

    ARTICLE

    Sec-Auditor: A Blockchain-Based Data Auditing Solution for Ensuring Integrity and Semantic Correctness

    Guodong Han, Hecheng Li*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2121-2137, 2024, DOI:10.32604/cmc.2024.053077

    Abstract Currently, there is a growing trend among users to store their data in the cloud. However, the cloud is vulnerable to persistent data corruption risks arising from equipment failures and hacker attacks. Additionally, when users perform file operations, the semantic integrity of the data can be compromised. Ensuring both data integrity and semantic correctness has become a critical issue that requires attention. We introduce a pioneering solution called Sec-Auditor, the first of its kind with the ability to verify data integrity and semantic correctness simultaneously, while maintaining a constant communication cost independent of the audited… More >

  • Open Access

    ARTICLE

    ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images

    Jing Wang1,2,*, Chen Zhang1, Tianwen Lin1

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1907-1925, 2024, DOI:10.32604/cmc.2024.052597

    Abstract When existing deep learning models are used for road extraction tasks from high-resolution images, they are easily affected by noise factors such as tree and building occlusion and complex backgrounds, resulting in incomplete road extraction and low accuracy. We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt. Then, ConvNeXt is used as the backbone network, which cooperates with the perceptual analysis network UPerNet, retains the detection head of the semantic segmentation, and builds a new model ConvNeXt-UPerNet to suppress noise interference. Training on the open-source DeepGlobe and CHN6-CUG… More >

  • Open Access

    ARTICLE

    Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

    Asifa Mehmood Qureshi1, Abdul Haleem Butt1, Abdulwahab Alazeb2, Naif Al Mudawi2, Mohammad Alonazi3, Nouf Abdullah Almujally4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3315-3332, 2024, DOI:10.32604/cmc.2024.052582

    Abstract Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy. Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected… More >

  • Open Access

    ARTICLE

    ED-Ged: Nighttime Image Semantic Segmentation Based on Enhanced Detail and Bidirectional Guidance

    Xiaoli Yuan, Jianxun Zhang*, Xuejie Wang, Zhuhong Chu

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2443-2462, 2024, DOI:10.32604/cmc.2024.052285

    Abstract Semantic segmentation of driving scene images is crucial for autonomous driving. While deep learning technology has significantly improved daytime image semantic segmentation, nighttime images pose challenges due to factors like poor lighting and overexposure, making it difficult to recognize small objects. To address this, we propose an Image Adaptive Enhancement (IAEN) module comprising a parameter predictor (Edip), multiple image processing filters (Mdif), and a Detail Processing Module (DPM). Edip combines image processing filters to predict parameters like exposure and hue, optimizing image quality. We adopt a novel image encoder to enhance parameter prediction accuracy by More >

  • Open Access

    ARTICLE

    Learning Dual-Layer User Representation for Enhanced Item Recommendation

    Fuxi Zhu1, Jin Xie2,*, Mohammed Alshahrani3

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 949-971, 2024, DOI:10.32604/cmc.2024.051046

    Abstract User representation learning is crucial for capturing different user preferences, but it is also critical challenging because user intentions are latent and dispersed in complex and different patterns of user-generated data, and thus cannot be measured directly. Text-based data models can learn user representations by mining latent semantics, which is beneficial to enhancing the semantic function of user representations. However, these technologies only extract common features in historical records and cannot represent changes in user intentions. However, sequential feature can express the user’s interests and intentions that change time by time. But the sequential recommendation… More >

  • Open Access

    ARTICLE

    Orbit Weighting Scheme in the Context of Vector Space Information Retrieval

    Ahmad Ababneh1, Yousef Sanjalawe2, Salam Fraihat3,*, Salam Al-E’mari4, Hamzah Alqudah5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1347-1379, 2024, DOI:10.32604/cmc.2024.050600

    Abstract This study introduces the Orbit Weighting Scheme (OWS), a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval (IR) models, which have traditionally relied on weighting schemes like tf-idf and BM25. These conventional methods often struggle with accurately capturing document relevance, leading to inefficiencies in both retrieval performance and index size management. OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space, emphasizing term relationships and distribution patterns overlooked by existing models. Our research focuses on evaluating OWS’s impact… More >

  • Open Access

    ARTICLE

    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access

    ARTICLE

    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access

    ARTICLE

    Enhancing Cross-Lingual Image Description: A Multimodal Approach for Semantic Relevance and Stylistic Alignment

    Emran Al-Buraihy, Dan Wang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3913-3938, 2024, DOI:10.32604/cmc.2024.048104

    Abstract Cross-lingual image description, the task of generating image captions in a target language from images and descriptions in a source language, is addressed in this study through a novel approach that combines neural network models and semantic matching techniques. Experiments conducted on the Flickr8k and AraImg2k benchmark datasets, featuring images and descriptions in English and Arabic, showcase remarkable performance improvements over state-of-the-art methods. Our model, equipped with the Image & Cross-Language Semantic Matching module and the Target Language Domain Evaluation module, significantly enhances the semantic relevance of generated image descriptions. For English-to-Arabic and Arabic-to-English cross-language… More >

Displaying 1-10 on page 1 of 148. Per Page