Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (814)
  • Open Access

    ARTICLE

    The Lie-Group Shooting Method for Thermal Stress Evaluation Through an Internal Temperature Measurement

    Chein-Shan Liu1

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 1-16, 2008, DOI:10.3970/cmc.2008.008.001

    Abstract In the present work we study numerical computations of inverse thermal stress problems. The unknown boundary conditions of an elastically deformable heat conducting rod are not given a priori and are not allowed to measure directly, because the boundary may be not accessible to measure. However, an internal measurement of temperature is available. We treat this inverse problem by using a semi-discretization technique, of which the time domain is divided into many sub-intervals and the physical quantities are discretized at these node points of discrete times. Then the resulting ordinary differential equations in the discretized space are numerically integrated towards… More >

  • Open Access

    ARTICLE

    A Meshless Local Petrov-Galerkin Method for the Analysis of Cracks in the Isotropic Functionally Graded Material

    K.Y. Liu1,2,3, S.Y. Long1,2,4, G.Y. Li1

    CMC-Computers, Materials & Continua, Vol.7, No.1, pp. 43-58, 2008, DOI:10.3970/cmc.2008.007.043

    Abstract A meshless local Petrov-Galerkin method (MLPG) [[Atluri and Zhu (1998)] for the analysis of cracks in isotropic functionally graded materials is presented. The meshless method uses the moving least squares (MLS) to approximate the field unknowns. The shape function has not the Kronecker Delta properties for the trial-function-interpolation, and a direct interpolation method is adopted to impose essential boundary conditions. The MLPG method does not involve any domain and singular integrals to generate the global effective stiffness matrix if body force is ignored; it only involves a regular boundary integral. The material properties are smooth functions of spatial coordinates and… More >

  • Open Access

    ARTICLE

    A General Equation for Stress Concentration in Countersunk Holes

    Kunigal N. Shivakumar1, Anil Bhargava2, Sameer Hamoush3

    CMC-Computers, Materials & Continua, Vol.6, No.2, pp. 71-92, 2007, DOI:10.3970/cmc.2007.006.071

    Abstract A detailed and accurate three-dimensional finite element stress analysis was conducted on countersunk rivet holes in a plate subjected to tension loading. The analysis included a wide range of countersunk depths, plate thicknesses, countersunk angles and plate widths. The study confirmed some of the previous results, addressed their differences, provided many new results, and investigated countersunk angle and width effects. Using the detailed FE results and the limiting conditions, a general equation for stress concentration was developed and verified. More >

  • Open Access

    ARTICLE

    An Analytical Model for Shot-Peening Induced Residual Stresses

    Shengping Shen1, S. N. Atluri2

    CMC-Computers, Materials & Continua, Vol.4, No.2, pp. 75-86, 2006, DOI:10.3970/cmc.2006.004.075

    Abstract To improve the fatigue life of metallic components, especially in aerospace industry, shot peening is widely used. There is a demand for the advancement of numerical algorithms and methodologies for the estimation of residual stresses due to shot peening. This paper describes an analytical model to simulate the shot peening process and to estimate the residual stress field in the surface layer. In this reasonable, convenient, and simple model, no empirical relation is used, and the effects of shot velocity are included. The results of validation of this model against the test data are very good. More >

  • Open Access

    ARTICLE

    Yield Stress Prediction Model of RAFM Steel Based on the Improved GDM-SA-SVR Algorithm

    Sifan Long1, Ming Zhao2,*, Xinfu He3

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 727-760, 2019, DOI:10.32604/cmc.2019.04454

    Abstract With the development of society and the exhaustion of fossil energy, researcher need to identify new alternative energy sources. Nuclear energy is a very good choice, but the key to the successful application of nuclear technology is determined primarily by the behavior of nuclear materials in reactors. Therefore, we studied the radiation performance of the fusion material reduced activation ferritic/martensitic (RAFM) steel. The main novelty of this paper are the statistical analysis of RAFM steel data sets through related statistical analysis and the formula derivation of the gradient descent method (GDM) which combines the gradient descent search strategy of the… More >

  • Open Access

    ARTICLE

    A Straightforward Direct Traction Boundary Integral Method for Two-Dimensional Crack Problems Simulation of Linear Elastic Materials

    Chao Zhang1, Chunhe Yang1, Shangwei Wu2,3, Xiaolong Zhang1,2, Wen Nie2,*

    CMC-Computers, Materials & Continua, Vol.58, No.3, pp. 761-775, 2019, DOI:10.32604/cmc.2019.04363

    Abstract This paper presents a direct traction boundary integral equation method (DTBIEM) for two-dimensional crack problems of materials. The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces. The displacements and tractions were used as unknowns on the external boundary, while the relative crack opening displacement (RCOD) was chosen as unknowns on either side of crack surfaces to keep the single-domain merit. Only one side of the crack surfaces was concerned and needed to be discretized, thus the proposed method resulted in a smaller system of algebraic equations compared with the dual… More >

  • Open Access

    ARTICLE

    A Study on Dual-Load-Zone Model of Overlying Strata and Evolution Law of Mining Stress

    Yuejin Zhou1,*, Mingpeng Li1, Xiaoding Xu1, Meng Li1

    CMC-Computers, Materials & Continua, Vol.58, No.2, pp. 391-407, 2019, DOI:10.32604/cmc.2019.04456

    Abstract The changeable structure and movement law of overlying strata are the main contributor to the change of mining stress. Starting from the relevant theory of key stratum and particularly based on the theory of mine ground pressure and strata control, this research proposed a new solution to mining stress problems by establishing a dual-load-zone stratum structural model. Elastic foundation beam theory was used to solve the stress of overlying strata of the dual-load-zones with superposition method, which revised the traditional calculation method of mining stress. The abnormal increase of lead abutment pressure in the mining area was explained effectively, through… More >

  • Open Access

    ARTICLE

    A Size-Dependent Functionally Graded Higher Order Plate Analysis Based on Modified Couple Stress Theory and Moving Kriging Meshfree Method

    T. D. Tran1, Chien H. Thai2,3,*, H. Nguyen-Xuan4,5,*

    CMC-Computers, Materials & Continua, Vol.57, No.3, pp. 447-483, 2018, DOI:10.32604/cmc.2018.01738

    Abstract A size-dependent computational approach for bending, free vibration and buckling analyses of isotropic and sandwich functionally graded (FG) microplates is in this study presented. We consider both shear deformation and small scale effects through the generalized higher order shear deformation theory and modified couple stress theory (MCST). The present model only retains a single material length scale parameter for capturing properly size effects. A rule of mixture is used to model material properties varying through the thickness of plates. The principle of virtual work is used to derive the discrete system equations which are approximated by moving Kriging interpolation (MKI)… More >

  • Open Access

    ARTICLE

    The Discrete-Analytical Solution Method for Investigation Dynamics of the Sphere with Inhomogeneous Initial Stresses

    Surkay D. Akbarov1,2, Hatam H. Guliyev3, Yusif M. Sevdimaliyev4, Nazmiye Yahnioglu5,*

    CMC-Computers, Materials & Continua, Vol.55, No.2, pp. 359-380, 2018, DOI:10.3970/cmc.2018.00173

    Abstract The paper deals with a development of the discrete-analytical method for the solution of the dynamical problems of a hollow sphere with inhomogeneous initial stresses. The examinations are made with respect to the problem on the natural vibration of the hollow sphere the initial stresses in which is caused by internal and external uniformly distributed pressure. The initial stresses in the sphere are determined within the scope of the exact equations of elastostatics. It is assumed that after appearing this static initial stresses the sphere gets a dynamical excitation and mechanical behavior of the sphere caused by this excitation is… More >

  • Open Access

    ARTICLE

    Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation

    Liang Yang1,2, Caizhuang Wang3,*, Shiwei Lin2,*, Yang Cao2, Xiaoheng Liu1

    CMC-Computers, Materials & Continua, Vol.55, No.1, pp. 177-188, 2018, DOI:10.3970/cmc.2018.055.177

    Abstract Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titanium… More >

Displaying 761-770 on page 77 of 814. Per Page