Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (817)
  • Open Access

    ARTICLE

    Effect of An Initial Stress on SH-Type GuidedWaves Propagating in a Piezoelectric Layer Bonded on A Piezomagnetic Substrate

    Guoquan Nie1,2, Jinxi Liu1, Ming Li1

    CMC-Computers, Materials & Continua, Vol.48, No.3, pp. 133-145, 2015, DOI:10.3970/cmc.2015.048.133

    Abstract Propagation of SH-type guided waves in a layered structure with an invariant initial stress is studied, where a piezoelectric thin layer is perfectly bonded on a piezomagnetic substrate. Both the layer and the substrate possess transversely isotropic property. The dispersion relations of SH waves are obtained for four kinds of different electro-magnetic boundary conditions. The effects of initial stress, thickness ratio and electro-magnetic boundary conditions on the propagation behaviors are analyzed in detail. The numerical results show that: 1) The positive initial stresses make the phase velocity increasing, while the negative initial stresses decrease the phase velocity; 2) The smaller… More >

  • Open Access

    ARTICLE

    Minimizing Thermal Residual Stress in Ni/Al2O3 Functionally Graded Material Plate by Volume Fraction Optimization

    Xing Wei1,2, Wen Chen1,3, Bin Chen1

    CMC-Computers, Materials & Continua, Vol.48, No.1, pp. 1-23, 2015, DOI:10.3970/cmc.2015.048.001

    Abstract The thermal residual stress in the fabrication of functionally graded material (FGM) systems can give rise to various mechanical failures. For a FGM system under a given fabrication environment, the thermal residual stresses are determined by the spatial distribution of its constituent components. In this study, we optimize a Ni/Al2O3 FGM plate aiming at minimizing the thermal residual stresses through controlling its compositional distribution. Material properties are graded in the thickness direction following a power law distribution in terms of the volume fractions of constituents (P-FGM). An analytical model and a hybrid genetic algorithm with the pattern search are employed… More >

  • Open Access

    ARTICLE

    A New Theory of Strain Hardening and its Consequences for Yield Stress and Failure Stress

    CMC-Computers, Materials & Continua, Vol.47, No.1, pp. 45-63, 2015, DOI:10.3970/cmc.2015.047.045

    Abstract A new theory of strain hardening is developed. Important in its own right, the strain hardening solution is also of decisive use in rigorously defining the historically broad concepts of yield stress and failure stress. Under ideal conditions yield stress is found to represent a 3rd order transition. Failure stress is an explicit "failure of function" criterion rather than just being the primitive notion of breaking into pieces. Computational extensions and opportunities are discussed. More >

  • Open Access

    ARTICLE

    Fracture Mechanics Approach to Estimate Fatigue Lives of Welded Lap-Shear Specimens

    1Poh-Sang Lam2, Jwo Pan3

    CMC-Computers, Materials & Continua, Vol.46, No.1, pp. 1-16, 2015, DOI:10.3970/cmc.2015.046.001

    Abstract A full range of stress intensity factor solutions for a kinked crack with finite length is developed as a function of weld width and the sheet thickness. When used with the main crack solutions (global stress intensity factors) in terms of the applied load and the specimen geometric parameters, the fatigue lives of the kinked crack can be estimated for the laser-welded lap-shear specimens. The predicted curve for the load range-fatigue life passes through the cluster of experimental data and is in good agreement. A classical solution associated with an infinitesimal kink is also employed. However, its life prediction tends… More >

  • Open Access

    ARTICLE

    Analytical Solution of Thermo-elastic Stresses and Deformation of Functionally Graded Rotating Hollow Discs with Radially Varying Thermo-mechanical Properties under Internal Pressure

    M.R. Akbari1, J. Ghanbari1,2

    CMC-Computers, Materials & Continua, Vol.45, No.3, pp. 187-202, 2015, DOI:10.3970/cmc.2015.045.187

    Abstract Exact analytical solution for functionally graded hollow discs under internal pressure, thermal load and rotation are provided in this paper. Material properties of discs, i.e. elastic modulus, density and thermal expansion coefficient are assumed to vary in radial direction. Two power functions are assumed for property dependency to study various types of functional grading of materials in the discs. Assuming small deformations, a differential equation is obtained and solved for the Airy stress function. The effects of various grading functions on the stress and deformation distribution are studied and an optimum value for the power is obtained. More >

  • Open Access

    ARTICLE

    Thermo-elastic Stresses in a Functional Graded Material Under Thermal Loading, Pure Bending and Thermo-mechanical Coupling

    Wei Zhang1,2, Pengcheng Ni2, Bingfei Liu1,3

    CMC-Computers, Materials & Continua, Vol.44, No.2, pp. 105-122, 2014, DOI:10.3970/cmc.2014.044.105

    Abstract Analytical expressions have been derived for the through thickness stresses of a Functional graded materials (FGMs) thin plate subjected to thermal loading, pure bending and thermo-mechanical coupling, respectively. The structure is comprised of a metallic layer, a ceramic layer and a functional graded layer. Continuous gradation of the volume fraction in the FGM layer is modeled in the form of an "m" power polynomial of the coordinate axis in thickness direction of the plate. Numerical scheme of discretizing the continuous FGM layer with different graded distributions such as linear (m=1), quadratic (m=2) and square root (m=0.5) has been developed by… More >

  • Open Access

    ARTICLE

    Modeling of Hydro-Viscoelastic State of Deformable and Saturated Product During Convective Drying

    R. Lamloumi1,2, L. Hassini1, G. L. Lecomte-Nana2, M. A. Elcafsi1, D. Smith2

    CMC-Computers, Materials & Continua, Vol.43, No.3, pp. 137-152, 2014, DOI:10.3970/cmc.2014.043.137

    Abstract A mathematical model was developed to simulate in 2D the spatiotemporal evolution of the moisture content, the temperature and the mechanical stress within a deformable and saturated product during convective drying. A comprehensive hydro-thermal model had been merged with a Maxwell model with two branches, assuming a viscoelastic material, a plane deformation and an isotropic hydric-shrinkage of the sample. A long sample of clay mixture with a square section was chosen as an application case. The transport and equilibrium properties of the product required for the modeling were determined from previous experiments which were independent of the drying trials. In… More >

  • Open Access

    ARTICLE

    An Integrated Fracture Mechanics Based Approach for Non-Linear Analysis of Lightly Reinforced Concrete Beams

    Ananthalakshmi K. Iyer1, A. Rama Chra Murthy2, Smitha Gopinath2, Nagesh R. Iyer3

    CMC-Computers, Materials & Continua, Vol.42, No.3, pp. 227-244, 2014, DOI:10.3970/cmc.2014.042.227

    Abstract A non-linear fracture mechanics based approach is proposed to depict a typical fracture mechanism from initiation to growth, eventually leading to failure. This concept is developed for a lightly reinforced beam in flexure. The proposed model integrates the existing methodology of a Stress Intensity Factor equilibrium equation with the bridging forces developed in concrete cover and rebar. The model and solution algorithm outlined presents an elaborate understanding of the mechanism involved and is significant in predicting the behaviour of flexural members. The analysis is performed using MATLAB programming. The proposed approach ensures a maximum tolerable crack length and crack width… More >

  • Open Access

    ARTICLE

    Size-Dependent Flexural Dynamics of Ribs-Connected Polymeric Micropanels

    K.B. Mustapha 1,2

    CMC-Computers, Materials & Continua, Vol.42, No.2, pp. 141-174, 2014, DOI:10.3970/cmc.2014.042.141

    Abstract This study investigates the sensitivity of the flexural response of a ribconnected system of coupled micro-panels with traction-free surfaces. Idealized as a two-dimensional elastic continuum with a finite transverse stiffness, each micropanels’ behavior is examined within the framework of the biharmonic mathematical model derived from the higher-order, size-dependent strain energy formulation. The model incorporates the material length scale, which bears an associative relationship with the underlying polymer’s averaged Frank elastic constant. Upper estimates of the eigenvalue of the system, under fully clamped edges and simplysupported edges, are determined by the Rayleigh method. The adopted theory for the micro-panel’s behavior takes… More >

  • Open Access

    ARTICLE

    Finite Element Modeling of Compressive Deformation of Super-long Vertically Aligned Carbon Nanotubes

    J. Joseph1, Y. C. Lu 1,

    CMC-Computers, Materials & Continua, Vol.42, No.1, pp. 63-74, 2014, DOI:10.3970/cmc.2014.042.063

    Abstract The super-long, vertically aligned carbon nanotubes (SL-VACNTs) are novel carbon nanomaterial produced from template-free synthesis. The mechanical responses of such material have been investigated by continuum finite element modeling and compared with experimental observations. The crushable foam model has been adequate in modeling the stress-strain curve and deformation of the SL-VACNTs under compression. SL-VACNTs are seen to exhibit transient elastic deformation at small displacement and then plastic deformation at large displacement. The deformation mostly occur at the position immediately beneath the compression platen (indenter face) due to the high stress/strain concentrations. More >

Displaying 781-790 on page 79 of 817. Per Page