Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    Molybdenum disulfide carbon composite material using hydrothermal method as electrode material for supercapacitors

    X. L. Guoa, Y. F. Zhanga,*, S. Y. Lib, Q. Lib, Q. Haoc, X. Y. Ranc, Y. M. Zhaod

    Chalcogenide Letters, Vol.22, No.4, pp. 313-330, 2025, DOI:10.15251/CL.2025.224.313

    Abstract MoS2 has excellent properties but low conductivity, limiting its use in supercapacitors. Carbon’s high conductivity and stability enhance MoS2’s electrochemical performance and cycling stability. This study prepared MoS2/C composites via a one-step hydrothermal method, exploring the effects of solvents and carbon content. Deionized water as a solvent resulted in composites with large specific surface areas and good electrochemical properties. Increasing carbon content improved electrochemical performance, peaking at a glucose content of 0.28 mmol, achieving a specific capacitance of 202.6 F/g. However, excessive carbon content led to decreased performance. More >

  • Open Access

    ARTICLE

    Improved electrochemical performance of nanostructured CO3O4/CO3S4 composite for supercapacitor applications

    J. Ahmada, Naeem-Ur-Rehmana,*, M. Shakila, M. Saleema, K. Mahmoodb, A. Alib, M. Imranc, S. Sharifd, Hosam O. Elansarye, S. Mumtazf, A. D. Khalidg

    Chalcogenide Letters, Vol.22, No.4, pp. 277-292, 2025, DOI:10.15251/CL.2025.224.277

    Abstract This study highlights the superior electrochemical performance of Co3O4/Co3S4 composite nanoparticles for supercapacitors, compared to individual Co3O4 and Co3S4, synthesized using sol-gel, co-precipitation, and mechanical alloying methods. The composite combines pseudocapacitance and electric double-layer capacitance, as evidenced by cyclic voltammetry. It exhibits a specific capacitance of 722.9 F/g at 0.5 A/g and an energy density of 73.8 Wh/kg at 405 W/kg. Electrochemical impedance spectroscopy reveals low charge transfer resistance and excellent cycling stability is achieved, with 98.5% capacitance retention after 1500 cycles. These results confirm the composite's potential for high-performance energy storage applications. More >

  • Open Access

    REVIEW

    A Review on the Research Progress of Layered Double Hydroxides Electrode Materials for Supercapacitors

    Hengzheng Li1,2, Jie Yang1,*

    Energy Engineering, Vol.122, No.7, pp. 2589-2609, 2025, DOI:10.32604/ee.2025.063268 - 27 June 2025

    Abstract Layered double hydroxides (LDHs) are a class of transition metal-based materials characterized by their two-dimensional nano-layered structure. They offer several advantages, such as easy adjustability of morphology and structure and simple preparation methods, making them highly promising for the development of low-cost, high energy density supercapacitors. This article begins with a brief introduction to the basic structure, energy storage mechanism, and application challenges of LDHs. It then proceeds to summarize the innovations in the preparation methods of LDH electrode materials, such as the application of high precision synthesis technologies including component regulation, amorphization, and the… More >

  • Open Access

    ARTICLE

    Techno-Economic Comparison of Electrochemical Batteries and Supercapacitors for Solar Energy Storage in a Brazil Island Application: Off-Grid and On-Grid Configurations

    Alex Ximenes Naves1, Gladys Maquera2, Assed Haddad1, Dieter Boer3,*

    Energy Engineering, Vol.122, No.7, pp. 2611-2636, 2025, DOI:10.32604/ee.2025.061971 - 27 June 2025

    Abstract The growing concern for energy efficiency and the increasing deployment of intermittent renewable energies has led to the development of technologies for capturing, storing, and discharging energy. Supercapacitors can be considered where batteries do not meet the requirements. However, supercapacitors in systems with a slower charge/discharge cycle, such as photovoltaic systems (PVS), present other obstacles that make replacing batteries more challenging. An extensive literature review unveils a knowledge gap regarding a methodological comparison of batteries and supercapacitors. In this study, we address the technological feasibility of intermittent renewable energy generation systems, focusing on storage solutions… More > Graphic Abstract

    Techno-Economic Comparison of Electrochemical Batteries and Supercapacitors for Solar Energy Storage in a Brazil Island Application: Off-Grid and On-Grid Configurations

  • Open Access

    ARTICLE

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

    Diju Gao, Shuai Li*

    Energy Engineering, Vol.122, No.4, pp. 1425-1442, 2025, DOI:10.32604/ee.2025.062101 - 31 March 2025

    Abstract To safeguard the ocean ecosystem, fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency, low noise, and cleanliness. However, fuel cells in hybrid power systems are highly susceptible to load transients, which can severely damage fuel cells and shorten their lifespan. Therefore, the formulation of energy management strategies accounting for power degradation is crucial and urgent. In this study, an improved strategy for equivalent consumption minimization strategy (ECMS) considering power degradation is proposed. The improved energy control strategy effectively controls the energy distribution of hydrogen fuel… More > Graphic Abstract

    An Equivalent Fuel Consumption Minimizing Strategy for Fuel Cell Ships Considering Power Degradation

  • Open Access

    ARTICLE

    Characterization and application of electrochemical deposition Cdse thin films

    D. N. Alhilfia,*, A. S. Al-Kabbibb

    Chalcogenide Letters, Vol.21, No.8, pp. 641-649, 2024, DOI:10.15251/CL.2024.218.641

    Abstract The electrochemical deposition method created a CdSe thin film on FTO glass substrates. The film was examined using field scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, and optical and electrochemical measurements. The results show that the CdSe nanoparticles were evenly distributed on the substrate, with a Cd/Se ratio of 63.30% Se and 36.70% Cd. The XRD revealed a polycrystalline, hexagonal structure. The film is n-type semiconductor concentration with a carrier concentration of 1.194×1020 cm-3 . The CdSe showed 552.5 mF/cm2 of specific capacity with energy and a power density of 2.5 mW/cm2 and 9000 mW/cm2 More >

  • Open Access

    ARTICLE

    Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism

    Shihao Feng1,2,3, Qin Ouyang1,2,*, Jing Huang1,2, Xilin Zhang3, Zhongjun Ma4, Kun Liang1,2, Qing Huang1,2,*

    Journal of Renewable Materials, Vol.12, No.7, pp. 1207-1218, 2024, DOI:10.32604/jrm.2024.052579 - 21 August 2024

    Abstract Lignin-derived porous carbons have emerged as promising electrode materials for supercapacitors. However, the challenge remains in designing and controlling their structure to achieve ideal electrochemical performance due to the complex molecular structure of lignin and its intricate chemical reactions during the activation process. In this study, three porous carbons were synthesized from lignin by spray drying and chemical activation with varying KOH ratios. The specific surface area and structural order of the prepared porous carbon continued to increase with the increase of the KOH ratio. Thermogravimetric-mass spectrometry (TG-MS) was employed to track the molecular fragments More > Graphic Abstract

    Conversion of Lignin into Porous Carbons for High-Performance Supercapacitors via Spray Drying and KOH Activation: Structure-Properties Relationship and Reaction Mechanism

  • Open Access

    ARTICLE

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

    Borhan Albiss*, Asala Saleh

    Journal of Renewable Materials, Vol.12, No.7, pp. 1219-1236, 2024, DOI:10.32604/jrm.2024.050685 - 21 August 2024

    Abstract In this work, the fabrication and characterization of the nanocomposite hydrogel, as a solid electrode in electrochemical cell and gel electrolyte material using Indium titanium oxide/polyethylene terephthalate (ITO/PET) flexible substrate for double-layer supercapacitors have been reported. The nanocomposite hydrogel composed of Arabic gum (AG), Acrylic acid (AA), reduced graphene oxide (RGO), and silver nanoparticles (AgNPs) was fabricated via a physical cross-linked polymerization reaction, in which the ascorbic acid was used as a reducing agent to generate AgNPs and to convert Graphene oxide (GO) to RGO during the polymerization reaction. The morphology and structural characteristics of… More > Graphic Abstract

    Advanced Nanocomposite Arabic Gum Polyacrylic Acid Hydrogels for Flexible Supercapacitors

  • Open Access

    ARTICLE

    Two-Step Preparation of Hierarchical Porous Carbon Materials Derived from Tannin for Use as an Electrode Material for Supercapacitors

    Jianping Deng1, Qianqian Zhang1, Yuling Lan1, Lingcong Luo1, Zimin Dai1, Zhonghang Lin1, Zhixin Lu1, Jiancheng Yuan1, Yiqi Fu1, Lu Luo2,*, Weigang Zhao1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2631-2646, 2023, DOI:10.32604/jrm.2023.027163 - 27 April 2023

    Abstract The development and utilization of biomass and agroforestry processing byproducts for high-value applications have been an important topic in the field of renewable materials research. Based on this, a two-step microwave hydrothermal pre-carbonization and KOH activation method was proposed to synthesize tannin-based activated carbons with a high specific surface area, hierarchical pore structure, and good electrochemical performance. The microstructure, texture properties, and physicochemical characteristics were investigated. The results show that the prepared tannin-based activated carbons presented a hierarchical pore structure (micro- and mesopores) with a specific surface area as high as 997.46 m3 g−1 . The… More > Graphic Abstract

    Two-Step Preparation of Hierarchical Porous Carbon Materials Derived from Tannin for Use as an Electrode Material for Supercapacitors

Displaying 1-10 on page 1 of 15. Per Page