Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    REVIEW

    A Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins

    Antonio Pizzi1,*, Marie-Pierre Laborie2,3, Zeki Candan4

    Journal of Renewable Materials, Vol.12, No.3, pp. 397-425, 2024, DOI:10.32604/jrm.2023.046074 - 11 April 2024

    Abstract Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products. They are a definite class of sustainable materials of the forestry industry. They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries, such as wood adhesives, metal coating, pharmaceutical/medical applications and several others. This review presents the main sources, either already or potentially commercial of More > Graphic Abstract

    A Review on Sources, Extractions and Analysis Methods of a Sustainable Biomaterial: Tannins

  • Open Access

    ARTICLE

    Self-Cross-Linked Tannin-Aminated Tannin Surface Coatings for Particleboard

    Bengang Zhang1,*, Antonio Pizzi2,*, Mathieu Petrissans1, Anelie Petrissans1, Colin Baptiste1

    Journal of Renewable Materials, Vol.11, No.12, pp. 4097-4121, 2023, DOI:10.32604/jrm.2023.029761 - 10 November 2023

    Abstract Aminated tannins were prepared by reacting mimosa condensed tannin extract with ammonia yielding the substitution of many, if not all of the tannin hydroxyl groups with –NH2 groups. A tannin-aminated tannin (ATT) particleboard coating was then prepared by reacting raw tannin extract with aminated tannin extract and thus cross-liking the two by substituting tannin’s hydroxyl groups with the –NH2 groups on the aminated tannin to form –NH-bridges between the two. The resulting particleboard coating gave encouraging results when pressed at 180°C for 3 min. Conversely, the system in which tannin was reacted/cross-liked with urea (ATU) by… More >

  • Open Access

    ARTICLE

    Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin

    Elham Azadeh1, Ummi Hani Abdullah2,3, Christine Gerardin1,*, Antonio Pizzi1,*, Philippe Gerardin1, Cesar Segovia4

    Journal of Renewable Materials, Vol.11, No.10, pp. 3625-3645, 2023, DOI:10.32604/jrm.2023.030373 - 10 August 2023

    Abstract Water repellant, flexible biofoams using tannin esterified with various fatty acid chains, namely lauric, palmitic and oleic acids, by reaction with lauryl chloride, palmitoyl chloride, and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams. Glycerol, while initially added to control the reaction temperature, was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams. Acetaldehyde was used as the cross-linking agent instead of formaldehyde, as it showed a better performance with the esterified tannin. The compression results showed a significant decrease… More >

  • Open Access

    REVIEW

    Little Secrets for the Successful Industrial Use of Tannin Adhesives: A Review

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.11, No.9, pp. 3403-3415, 2023, DOI:10.32604/jrm.2023.030930 - 20 July 2023

    Abstract This brief article reviews a very particular and quite narrow field, namely what has been done and what is needed to know for tannin adhesives for wood panels to succeed industrially. The present fashionable focus on bioadhesives has led to producing chemical adhesive formulations and approaches for tannin adhesives as a subject of academic publications. These, as good and original they might be, are and will still remain a rather empty academic exercise if not put to the test of real industrial trials and industrial use. They will remain so without the “little” secrets and… More >

  • Open Access

    ARTICLE

    Study on the Preparation Process Optimization of Plywood Based on a Full Biomass Tannin-Sucrose Wood Adhesive

    Wen Gu#, Xinyue Ding#, Min Tang*, Feiyan Gong*, Shuangshuang Yuan, Jintao Duan

    Journal of Renewable Materials, Vol.11, No.8, pp. 3245-3259, 2023, DOI:10.32604/jrm.2023.027461 - 26 June 2023

    Abstract Biomass adhesive is conducive to decreasing the dependence of the wood adhesive industry on synthetic resin based on fossil resources and improving the market competitiveness of adhesives. It is also a critical breakthrough to realize the goal of carbon peaking and carbon neutrality in the wood industry. In this study, a full biomass wood adhesive composed of tannin and sucrose was developed and applied successfully to the preparation of plywood. The preparation technique of plywood was optimized, and the chemical structure, curing performance, crystallization property and thermal performance of the adhesive were investigated. Results showed… More >

  • Open Access

    ARTICLE

    Two-Step Preparation of Hierarchical Porous Carbon Materials Derived from Tannin for Use as an Electrode Material for Supercapacitors

    Jianping Deng1, Qianqian Zhang1, Yuling Lan1, Lingcong Luo1, Zimin Dai1, Zhonghang Lin1, Zhixin Lu1, Jiancheng Yuan1, Yiqi Fu1, Lu Luo2,*, Weigang Zhao1,*

    Journal of Renewable Materials, Vol.11, No.6, pp. 2631-2646, 2023, DOI:10.32604/jrm.2023.027163 - 27 April 2023

    Abstract The development and utilization of biomass and agroforestry processing byproducts for high-value applications have been an important topic in the field of renewable materials research. Based on this, a two-step microwave hydrothermal pre-carbonization and KOH activation method was proposed to synthesize tannin-based activated carbons with a high specific surface area, hierarchical pore structure, and good electrochemical performance. The microstructure, texture properties, and physicochemical characteristics were investigated. The results show that the prepared tannin-based activated carbons presented a hierarchical pore structure (micro- and mesopores) with a specific surface area as high as 997.46 m3 g−1 . The… More > Graphic Abstract

    Two-Step Preparation of Hierarchical Porous Carbon Materials Derived from Tannin for Use as an Electrode Material for Supercapacitors

  • Open Access

    ARTICLE

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

    Elham Azadeh1, Antonio Pizzi1,2,*, Christine Gerardin-Charbonnier1,*, Philippe Gerardin1

    Journal of Renewable Materials, Vol.11, No.6, pp. 2823-2848, 2023, DOI:10.32604/jrm.2023.027651 - 27 April 2023

    Abstract Non-isocyanate polyurethane (NIPU) foams from a commercial hydrolysable tannin extract, chestnut wood tannin extract, have been prepared to determine what chemical species and products are taking part in the reactions involved. This method is based on two main steps: the reaction with dimethyl carbonate and the formation of urethane bonds by further reaction of the carbonated tannin with a diamine-like hexamethylene diamine. The hydroxyl groups on the tannin polyphenols and on the carbohydrates intimately linked with it and part of a hydrolysable tannin are the groups involved in these reactions. The carbohydrate skeleton of the… More > Graphic Abstract

    Hydrolysable Chestnut Tannin Extract Chemical Complexity in Its  Reactions for Non-Isocyanate Polyurethanes (NIPU) Foams

  • Open Access

    ARTICLE

    Modification of Wood by Tannin-Furfuryl Alcohol Resins–Effect on Dimensional Stability, Mechanical Properties and Decay Durability

    Mahdi Mubarok1,2, Christine Gérardin-Charbonnier1,*, Elham Azadeh1, Firmin Obounou Akong1, Stéphane Dumarçay1, Antonio Pizzi1, Philippe Gérardin1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 505-521, 2023, DOI:10.32604/jrm.2022.024872 - 22 September 2022

    Abstract Furfurylation is a well-known wood modification technology. This paper studied the effect of tannin addition on the wood furfurylation. Three kinds of dicarboxylic acids, adipic acid, succinic acid, and tartaric acid, as well as glyoxal as a comparing agent, were used to catalyse the polymerisation of furanic or tannin-furanic solutions during wood modification. Impregnation of furanic or tannin-furanic solution at a certain concentration into the wood followed with curing at 103°C for a specific duration was performed for the wood modification. Different properties of the modified woods like dimensional stability, resistance of treatment to leaching, More >

  • Open Access

    REVIEW

    A Review of Soy-Tannin Gelling for Resins Applications

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.11, No.1, pp. 1-25, 2023, DOI:10.32604/jrm.2022.023314 - 10 August 2022

    Abstract Soy flour (SF), soy protein and soy protein isolates (SPI) have been the focus of increasing research on their application as new materials for a variety of applications, mainly for wood adhesives and other resins. Tannins too have been the focus of increasing research for similar applications. While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results. The paper after a More >

  • Open Access

    ARTICLE

    Self-Blowing Non-Isocyanate Polyurethane Foams Based on Hydrolysable Tannins

    Elham Azadeh1, Xinyi Chen2, Antonio Pizzi2,*, Christine Gérardin1, Philip Gérardin1, Hisham Essawy3

    Journal of Renewable Materials, Vol.10, No.12, pp. 3217-3227, 2022, DOI:10.32604/jrm.2022.022740 - 14 July 2022

    Abstract Non-isocyanate polyurethane (NIPU) foams using a hydrolysable tannin, also vulgarly called tannic acid, namely here commercial chestnut wood tannin extract was prepared. Compression strength did not appear to depend on the foam apparent density while the formulation composition of the NIPU foams has been shown to be more determinant. These NIPU foams appeared to be self-extinguishing once the high temperature flame is removed. The ignition time gave encouraging results but for improved fire resistance the foams may need some fire-retardant addition. FTIR spectrometry showed the formation of non-isocyanate urethane linkages. Thermogravimetric analysis indicated a good More >

Displaying 11-20 on page 2 of 45. Per Page