Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (110)
  • Open Access

    REVIEW

    A Survey of Federated Learning: Advances in Architecture, Synchronization, and Security Threats

    Faisal Mahmud1, Fahim Mahmud2, Rashedur M. Rahman1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073519 - 12 January 2026

    Abstract Federated Learning (FL) has become a leading decentralized solution that enables multiple clients to train a model in a collaborative environment without directly sharing raw data, making it suitable for privacy-sensitive applications such as healthcare, finance, and smart systems. As the field continues to evolve, the research field has become more complex and scattered, covering different system designs, training methods, and privacy techniques. This survey is organized around the three core challenges: how the data is distributed, how models are synchronized, and how to defend against attacks. It provides a structured and up-to-date review of… More >

  • Open Access

    ARTICLE

    Advanced AI-Driven Cybersecurity Solutions: Intelligent Threat Detection, Explainability, and Adversarial Resilience

    Kirubavathi Ganapathiyappan1,*, Kiruba Marimuthu Eswaramoorthy1, Abi Thangamuthu Shanthamani1, Aksaya Venugopal1, Asita Pon Bhavya Iyyappan1, Thilaga Manickam1, Ateeq Ur Rehman2,*, Habib Hamam3,4,5,6

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070067 - 09 December 2025

    Abstract The growing use of Portable Document Format (PDF) files across various sectors such as education, government, and business has inadvertently turned them into a major target for cyberattacks. Cybercriminals take advantage of the inherent flexibility and layered structure of PDFs to inject malicious content, often employing advanced obfuscation techniques to evade detection by traditional signature-based security systems. These conventional methods are no longer adequate, especially against sophisticated threats like zero-day exploits and polymorphic malware. In response to these challenges, this study introduces a machine learning-based detection framework specifically designed to combat such threats. Central to… More >

  • Open Access

    ARTICLE

    Lightweight Multi-Agent Edge Framework for Cybersecurity and Resource Optimization in Mobile Sensor Networks

    Fatima Al-Quayed*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069102 - 10 November 2025

    Abstract Due to the growth of smart cities, many real-time systems have been developed to support smart cities using Internet of Things (IoT) and emerging technologies. They are formulated to collect the data for environment monitoring and automate the communication process. In recent decades, researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations. However, the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity. These systems are vulnerable to a variety of cyberattacks, including unauthorized access,… More >

  • Open Access

    ARTICLE

    UGEA-LMD: A Continuous-Time Dynamic Graph Representation Enhancement Framework for Lateral Movement Detection

    Jizhao Liu, Yuanyuan Shao*, Shuqin Zhang, Fangfang Shan, Jun Li

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.068998 - 10 November 2025

    Abstract Lateral movement represents the most covert and critical phase of Advanced Persistent Threats (APTs), and its detection still faces two primary challenges: sample scarcity and “cold start” of new entities. To address these challenges, we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework (UGEA-LMD). First, the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution, enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem. Second, in the embedding space, we model the dependency structure among… More >

  • Open Access

    ARTICLE

    A New Dataset for Network Flooding Attacks in SDN-Based IoT Environments

    Nader Karmous1, Wadii Jlassi1, Mohamed Ould-Elhassen Aoueileyine1, Imen Filali2,*, Ridha Bouallegue1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4363-4393, 2025, DOI:10.32604/cmes.2025.074178 - 23 December 2025

    Abstract This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments, built upon a novel, synthetic multi-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling. The proposed model is based on the XGBoost algorithm, optimized with Principal Component Analysis for dimensionality reduction, utilizing lightweight flow-level features extracted from OpenFlow statistics to classify attacks across critical IoT protocols including TCP, UDP, HTTP, MQTT, and CoAP. The model employs lightweight flow-level features extracted from OpenFlow statistics to ensure low computational overhead and fast processing. Performance was rigorously… More >

  • Open Access

    REVIEW

    Next-Generation Lightweight Explainable AI for Cybersecurity: A Review on Transparency and Real-Time Threat Mitigation

    Khulud Salem Alshudukhi1,*, Sijjad Ali2, Mamoona Humayun3,*, Omar Alruwaili4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3029-3085, 2025, DOI:10.32604/cmes.2025.073705 - 23 December 2025

    Abstract Problem: The integration of Artificial Intelligence (AI) into cybersecurity, while enhancing threat detection, is hampered by the “black box” nature of complex models, eroding trust, accountability, and regulatory compliance. Explainable AI (XAI) aims to resolve this opacity but introduces a critical new vulnerability: the adversarial exploitation of model explanations themselves. Gap: Current research lacks a comprehensive synthesis of this dual role of XAI in cybersecurity—as both a tool for transparency and a potential attack vector. There is a pressing need to systematically analyze the trade-offs between interpretability and security, evaluate defense mechanisms, and outline a… More >

  • Open Access

    ARTICLE

    Trust-Aware AI-Enabled Edge Framework for Intelligent Traffic Control in Cyber-Physical Systems

    Khalid Haseeb1, Imran Qureshi2,*, Naveed Abbas1, Muhammad Ali3, Muhammad Arif Shah4, Qaisar Abbas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4349-4362, 2025, DOI:10.32604/cmes.2025.072326 - 23 December 2025

    Abstract The rapid evolution of smart cities has led to the deployment of Cyber-Physical IoT Systems (CPS-IoT) for real-time monitoring, intelligent decision-making, and efficient resource management, particularly in intelligent transportation and vehicular networks. Edge intelligence plays a crucial role in these systems by enabling low-latency processing and localized optimization for dynamic, data-intensive, and vehicular environments. However, challenges such as high computational overhead, uneven load distribution, and inefficient utilization of communication resources significantly hinder scalability and responsiveness. Our research presents a robust framework that integrates artificial intelligence and edge-level traffic prediction for CPS-IoT systems. Distributed computing for More >

  • Open Access

    ARTICLE

    MITRE ATT&CK-Driven Threat Analysis for Edge-IoT Environment and a Quantitative Risk Scoring Model

    Tae-hyeon Yun1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2707-2731, 2025, DOI:10.32604/cmes.2025.072357 - 26 November 2025

    Abstract The dynamic, heterogeneous nature of Edge computing in the Internet of Things (Edge-IoT) and Industrial IoT (IIoT) networks brings unique and evolving cybersecurity challenges. This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework by MITRE and introduces a lightweight, data-driven scoring model that enables rapid identification and prioritization of attacks. Inspired by the Factor Analysis of Information Risk model, our proposed scoring model integrates four key metrics: Common Vulnerability Scoring System (CVSS)-based severity scoring, Cyber Kill Chain–based difficulty estimation, Deep Neural Networks-driven detection scoring, and frequency… More >

  • Open Access

    ARTICLE

    AI-Driven Cybersecurity Framework for Safeguarding University Networks from Emerging Threats

    Boniface Wambui1,*, Margaret Mwinji1, Hellen Nyambura2

    Journal of Cyber Security, Vol.7, pp. 463-482, 2025, DOI:10.32604/jcs.2025.069444 - 23 October 2025

    Abstract As universities rapidly embrace digital transformation, their growing dependence on interconnected systems for academic, research, and administrative operations has significantly heightened their exposure to sophisticated cyber threats. Traditional defenses such as firewalls and signature-based intrusion detection systems have proven inadequate against evolving attacks like malware, phishing, ransomware, and advanced persistent threats (APTs). This growing complexity necessitates intelligent, adaptive, and anticipatory cybersecurity strategies. Artificial Intelligence (AI) offers a transformative approach by enabling automated threat detection, anomaly identification, and real-time incident response. This study sought to design and evaluate an AI-driven cybersecurity framework specifically for university networks… More >

  • Open Access

    REVIEW

    Integrating AI, Blockchain, and Edge Computing for Zero-Trust IoT Security: A Comprehensive Review of Advanced Cybersecurity Framework

    Inam Ullah Khan1, Fida Muhammad Khan1,*, Zeeshan Ali Haider1, Fahad Alturise2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4307-4344, 2025, DOI:10.32604/cmc.2025.070189 - 23 October 2025

    Abstract The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges due to the scale, complexity, and heterogeneity of interconnected devices. The current traditional centralized security models are deemed irrelevant in dealing with these threats, especially in decentralized applications where the IoT devices may at times operate on minimal resources. The emergence of new technologies, including Artificial Intelligence (AI), blockchain, edge computing, and Zero-Trust-Architecture (ZTA), is offering potential solutions as it helps with additional threat detection, data integrity, and system resilience in real-time. AI offers sophisticated anomaly detection and prediction analytics, and… More >

Displaying 1-10 on page 1 of 110. Per Page