Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (72)
  • Open Access

    ARTICLE

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

    Arpita Dinesh Sarang1, Mohsen Ali Alawami2, Ki-Woong Park3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 655-669, 2024, DOI:10.32604/cmes.2024.053434

    Abstract Nowadays, the use of Avatars that are unique digital depictions has increased by users to access Metaverse—a virtual reality environment—through multiple devices and for various purposes. Therefore, the Avatar and Metaverse are being developed with a new theory, application, and design, necessitating the association of more personal data and devices of targeted users every day. This Avatar and Metaverse technology explosion raises privacy and security concerns, leading to cyber attacks. MV-Honeypot, or Metaverse-Honeypot, as a commercial off-the-shelf solution that can counter these cyber attack-causing vulnerabilities, should be developed. To fill this gap, we study user’s More > Graphic Abstract

    MV-Honeypot: Security Threat Analysis by Deploying Avatar as a Honeypot in COTS Metaverse Platforms

  • Open Access

    REVIEW

    An Investigation on Open-RAN Specifications: Use Cases, Security Threats, Requirements, Discussions

    Heejae Park1, Tri-Hai Nguyen2, Laihyuk Park1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 13-41, 2024, DOI:10.32604/cmes.2024.052394

    Abstract The emergence of various technologies such as terahertz communications, Reconfigurable Intelligent Surfaces (RIS), and AI-powered communication services will burden network operators with rising infrastructure costs. Recently, the Open Radio Access Network (O-RAN) has been introduced as a solution for growing financial and operational burdens in Beyond 5G (B5G) and 6G networks. O-RAN promotes openness and intelligence to overcome the limitations of traditional RANs. By disaggregating conventional Base Band Units (BBUs) into O-RAN Distributed Units (O-DU) and O-RAN Centralized Units (O-CU), O-RAN offers greater flexibility for upgrades and network automation. However, this openness introduces new security More >

  • Open Access

    ARTICLE

    Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices

    Yangrong Chen1,2, June Li3,*, Yu Xia3, Ruiwen Zhang3, Lingling Li1,2, Xiaoyu Li1,2, Lin Ge1,2

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2579-2609, 2024, DOI:10.32604/cmc.2024.053230

    Abstract Intelligent electronic devices (IEDs) are interconnected via communication networks and play pivotal roles in transmitting grid-related operational data and executing control instructions. In the context of the heightened security challenges within smart grids, IEDs pose significant risks due to inherent hardware and software vulnerabilities, as well as the openness and vulnerability of communication protocols. Smart grid security, distinct from traditional internet security, mainly relies on monitoring network security events at the platform layer, lacking an effective assessment mechanism for IEDs. Hence, we incorporate considerations for both cyber-attacks and physical faults, presenting security assessment indicators and… More > Graphic Abstract

    Fortifying Smart Grids: A Holistic Assessment Strategy against Cyber Attacks and Physical Threats for Intelligent Electronic Devices

  • Open Access

    REVIEW

    A Comprehensive Survey on Advanced Persistent Threat (APT) Detection Techniques

    Singamaneni Krishnapriya*, Sukhvinder Singh

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2675-2719, 2024, DOI:10.32604/cmc.2024.052447

    Abstract The increase in number of people using the Internet leads to increased cyberattack opportunities. Advanced Persistent Threats, or APTs, are among the most dangerous targeted cyberattacks. APT attacks utilize various advanced tools and techniques for attacking targets with specific goals. Even countries with advanced technologies, like the US, Russia, the UK, and India, are susceptible to this targeted attack. APT is a sophisticated attack that involves multiple stages and specific strategies. Besides, TTP (Tools, Techniques, and Procedures) involved in the APT attack are commonly new and developed by an attacker to evade the security system.… More >

  • Open Access

    ARTICLE

    Security Analysis in Smart Agriculture: Insights from a Cyber-Physical System Application

    Ahmed Redha Mahlous*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4781-4803, 2024, DOI:10.32604/cmc.2024.050821

    Abstract Smart agriculture modifies traditional farming practices, and offers innovative approaches to boost production and sustainability by leveraging contemporary technologies. In today’s world where technology is everything, these technologies are utilized to streamline regular tasks and procedures in agriculture, one of the largest and most significant industries in every nation. This research paper stands out from existing literature on smart agriculture security by providing a comprehensive analysis and examination of security issues within smart agriculture systems. Divided into three main sections—security analysis, system architecture and design and risk assessment of Cyber-Physical Systems (CPS) applications—the study delves… More >

  • Open Access

    ARTICLE

    Enabling Efficient Data Transmission in Wireless Sensor Networks-Based IoT Applications

    Ibraheem Al-Hejri1, Farag Azzedin1,*, Sultan Almuhammadi1, Naeem Firdous Syed2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4197-4218, 2024, DOI:10.32604/cmc.2024.047117

    Abstract The use of the Internet of Things (IoT) is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices. In critical infrastructure domains like oil and gas supply, intelligent transportation, power grids, and autonomous agriculture, it is essential to guarantee the confidentiality, integrity, and authenticity of data collected and exchanged. However, the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques. Consequently, designing a lightweight secure More >

  • Open Access

    REVIEW

    A Review of Hybrid Cyber Threats Modelling and Detection Using Artificial Intelligence in IIoT

    Yifan Liu1, Shancang Li1,*, Xinheng Wang2, Li Xu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1233-1261, 2024, DOI:10.32604/cmes.2024.046473

    Abstract The Industrial Internet of Things (IIoT) has brought numerous benefits, such as improved efficiency, smart analytics, and increased automation. However, it also exposes connected devices, users, applications, and data generated to cyber security threats that need to be addressed. This work investigates hybrid cyber threats (HCTs), which are now working on an entirely new level with the increasingly adopted IIoT. This work focuses on emerging methods to model, detect, and defend against hybrid cyber attacks using machine learning (ML) techniques. Specifically, a novel ML-based HCT modelling and analysis framework was proposed, in which regularisation and Random Forest were More >

  • Open Access

    ARTICLE

    Robust Malicious Executable Detection Using Host-Based Machine Learning Classifier

    Khaled Soliman1,*, Mohamed Sobh2, Ayman M. Bahaa-Eldin2

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1419-1439, 2024, DOI:10.32604/cmc.2024.048883

    Abstract The continuous development of cyberattacks is threatening digital transformation endeavors worldwide and leads to wide losses for various organizations. These dangers have proven that signature-based approaches are insufficient to prevent emerging and polymorphic attacks. Therefore, this paper is proposing a Robust Malicious Executable Detection (RMED) using Host-based Machine Learning Classifier to discover malicious Portable Executable (PE) files in hosts using Windows operating systems through collecting PE headers and applying machine learning mechanisms to detect unknown infected files. The authors have collected a novel reliable dataset containing 116,031 benign files and 179,071 malware samples from diverse… More >

  • Open Access

    ARTICLE

    Securing Cloud-Encrypted Data: Detecting Ransomware-as-a-Service (RaaS) Attacks through Deep Learning Ensemble

    Amardeep Singh1, Hamad Ali Abosaq2, Saad Arif3, Zohaib Mushtaq4,*, Muhammad Irfan5, Ghulam Abbas6, Arshad Ali7, Alanoud Al Mazroa8

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 857-873, 2024, DOI:10.32604/cmc.2024.048036

    Abstract Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries, especially in light of the growing number of cybersecurity threats. A major and ever-present threat is Ransomware-as-a-Service (RaaS) assaults, which enable even individuals with minimal technical knowledge to conduct ransomware operations. This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models. For this purpose, the network intrusion detection dataset “UNSW-NB15” from the Intelligent Security Group of the University of New South Wales, Australia is analyzed. In the… More >

  • Open Access

    ARTICLE

    DeepSVDNet: A Deep Learning-Based Approach for Detecting and Classifying Vision-Threatening Diabetic Retinopathy in Retinal Fundus Images

    Anas Bilal1, Azhar Imran2, Talha Imtiaz Baig3,4, Xiaowen Liu1,*, Haixia Long1, Abdulkareem Alzahrani5, Muhammad Shafiq6

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 511-528, 2024, DOI:10.32604/csse.2023.039672

    Abstract Artificial Intelligence (AI) is being increasingly used for diagnosing Vision-Threatening Diabetic Retinopathy (VTDR), which is a leading cause of visual impairment and blindness worldwide. However, previous automated VTDR detection methods have mainly relied on manual feature extraction and classification, leading to errors. This paper proposes a novel VTDR detection and classification model that combines different models through majority voting. Our proposed methodology involves preprocessing, data augmentation, feature extraction, and classification stages. We use a hybrid convolutional neural network-singular value decomposition (CNN-SVD) model for feature extraction and selection and an improved SVM-RBF with a Decision Tree More >

Displaying 1-10 on page 1 of 72. Per Page