Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    3D Echo-Based Patient-Specific Computational Left Ventricle Models to Quantify Material Properties and Stress/Strain Differences between Ventricles with and without Infarct

    Rui Fan1, Dalin Tang2,3, Jing Yao4, Chun Yang5, Di Xu4

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.6, pp. 491-508, 2014, DOI:10.3970/cmes.2014.099.491

    Abstract Identifying ventricle material properties and its infarct area after heart attack noninvasively is of great important in clinical applications. An echo-based computational modeling approach was proposed to investigate left ventricle (LV) mechanical properties and stress conditions using patient-specific data. Echo data was acquired from one healthy volunteer (male, age: 58) and a male patient (age: 60) who had an acute inferior myocardial infarction one week before echo image acquisition. Standard echocardiograms were obtained using an ultrasound machine (E9, GE Mechanical Systems, Milwaukee, Wisconsin) with a 3V probe and data were segmented for model construction. Finite element models were constructed to… More >

  • Open Access

    ARTICLE

    A Precise Integration Method for Modeling GPR Wave Propagation in Layered Pavement Structure

    H. Y. Fang1,2,3, J. Liu4, F. M. Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.6, pp. 473-490, 2014, DOI:10.32604/cmes.2014.099.473

    Abstract Construction of electromagnetic wave propagation model in layered pavement structure is a key step in back analysis of ground penetrating radar (GPR) echo signal. The precise integration method (PIM) is a highly accurate, efficient, and unconditionally stable algorithm for solving 1-order ordinary differential equations. It is quite suitable for dealing with problems of wave propagation in layered media. In this paper, forward simulation of GPR electromagnetic wave propagating in homogeneous layered pavement structure is developed by employing PIM. To verify the performance of the proposed algorithm, simulated GPR signal is compared with the measured one. Excellent agreement is achieved. More >

  • Open Access

    ARTICLE

    Ambarzumyan Type Theorem For a Matrix Valued Quadratic Sturm-Liouville Problem

    Emrah Yilmaz1, Hikmet Koyunbakan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.6, pp. 463-471, 2014, DOI:10.3970/cmes.2014.099.463

    Abstract In this study, Ambarzumyan’s theorem for quadratic Sturm-Liouville problem is extended to second order differential systems of dimension d ≥ 2. It is shown that if the spectrum is the same as the spectrum belonging to the zero potential, then the matrix valued functions both P(x) and Q(x) are zero by imposing a condition on P(x). In scaler case, this problem was solved in [Koyunbakan, Lesnic and Panakhov (2013)]. More >

  • Open Access

    ARTICLE

    Local Defect Correction for Boundary Integral Equation Methods

    G. Kakuba1, M. J. H. Anthonissen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.6, pp. 445-462, 2014, DOI:10.3970/cmes.2014.099.445

    Abstract The aim in this paper is to develop a new local defect correction approach to gridding for problems with localised regions of high activity in the boundary element method. The technique of local defect correction has been studied for other methods as finite difference methods and finite volume methods. The initial attempts to developing such a technique by the authors for the boundary element method was based on block decomposition and manipulation of the coefficient matrix and right hand side of the system of equations in three dimension. It ignored the inherent global nature of the boundary integral equation, that… More >

  • Open Access

    ARTICLE

    Singular Boundary Method: Three Regularization Approaches and Exterior Wave Applications

    Zhuo-Jia Fu1, Wen Chen1,2, Jeng-Tzong Chen3, Wen-Zhen Qu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 417-443, 2014, DOI:10.3970/cmes.2014.099.417

    Abstract This study investigates the singular boundary method (SBM) with three regularization approaches for solving 2D and 3D exterior wave problems. The singular boundary method is a recent meshless boundary collocation method, which introduces the concept of source intensity factors to eliminate the singularity of the fundamental solutions. Recently, three approaches, the inverse interpolation technique (IIT), the semi-analytical technique with boundary IIT (SAT1) and the semi-analytical technique with integral mean value (SAT2), have been proposed to determine the source intensity factors for removing the singularities of Helmholtz fundamental solutions at origin. This study compares numerical accuracy and stability of these three… More >

  • Open Access

    ARTICLE

    An LGDAE Method to Solve Nonlinear Cauchy Problem Without Initial Temperature

    Chein-Shan Liu 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 371-391, 2014, DOI:10.3970/cmes.2014.099.371

    Abstract We recover an unknown initial temperature for a nonlinear heat conduction equation ut(x,t) = uxx(x,t) + H(x,t,u,ux), under the Cauchy boundary conditions specified on the left-boundary. The method in the present paper transforms the Cauchy problem into an inverse heat source problem to find F(x) in Tt(x,t) = Txx(x,t) + H + F(x). By using the GL(N,R) Lie-group differential algebraic equations (LGDAE) algorithm to integrate the numerical method of lines discretized equations from sideways heat equation, we can fast recover the initial temperature and two boundary conditions on the right-boundary. The accuracy and efficiency are confirmed by comparing the exact… More >

  • Open Access

    ARTICLE

    A New Approach to a Fuzzy Time-Optimal Control Problem

    Ş. Emrah Amrahov1, N. A. Gasilov2, A. G. Fatullayev2

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.5, pp. 351-369, 2014, DOI:10.3970/cmes.2014.099.351

    Abstract In this paper, we present a new approach to a time-optimal control problem with uncertainties. The dynamics of the controlled object, expressed by a linear system of differential equations, is assumed to be crisp, while the initial and final phase states are fuzzy sets. We interpret the problem as a set of crisp problems. We introduce a new notion of fuzzy optimal time and transform its calculation to two classical time-optimal control problems with initial and final sets. We examine the proposed approach on an example which is a problem of fuzzy control of mathematical pendulum. More >

  • Open Access

    ARTICLE

    A Novel Semi-Analytic Meshless Method for Solving Two- and Three-Dimensional Elliptic Equations of General Form with Variable Coefficients in Irregular Domains

    S.Yu. Reutskiy1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 327-349, 2014, DOI:10.3970/cmes.2014.099.327

    Abstract The paper presents a new meshless numerical method for solving 2D and 3D boundary value problems (BVPs) with elliptic PDEs of general form. The coefficients of the PDEs including the main operator part are spatially dependent functions. The key idea of the method is the use of the basis functions which satisfy the homogeneous boundary conditions of the problem. This allows us to seek an approximate solution in the form which satisfies the boundary conditions of the initial problem with any choice of the free parameters. As a result we separate approximation of the boundary conditions and approximation of the… More >

  • Open Access

    ARTICLE

    Comparison of Four Multiscale Methods for Elliptic Problems

    Y. T. Wu1, Y. F. Nie2, Z. H. Yang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 297-325, 2014, DOI:10.3970/cmes.2014.099.297

    Abstract Four representative multiscale methods, namely asymptotic homogenization method (AHM), heterogeneous multiscale method (HMM), variational multiscale (VMS) method and multiscale finite element method (MsFEM), for elliptic problems with multiscale coefficients are surveyed. According to the features they possess, these methods are divided into two categories. AHM and HMM belong to the up–down framework. The feature of the framework is that the macroscopic solution is solved first with the help of effective information computed in local domains, and then the multiscale solution is resolved in local domains using the macroscopic solution when necessary. VMS method andMsFEM fall in the uncoupling framework. The… More >

  • Open Access

    ARTICLE

    Dynamic Anti-plane Crack Analysis in Functional Graded Piezoelectric Semiconductor Crystals

    J. Sladek1,2, V. Sladek1, E. Pan3, D.L. Young4

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.4, pp. 273-296, 2014, DOI:10.3970/cmes.2014.099.273

    Abstract This paper presents a dynamic analysis of an anti-plane crack in functionally graded piezoelectric semiconductors. General boundary conditions and sample geometry are allowed in the proposed formulation. The coupled governing partial differential equations (PDEs) for shear stresses, electric displacement field and current are satisfied in a local weak-form on small fictitious subdomains. The derived local integral equations involve one order lower derivatives than the original PDEs. All field quantities are approximated by the moving least-squares (MLS) scheme. After performing spatial integrations, we obtain a system of ordinary differential equations for the involved nodal unknowns. It is noted that the stresses… More >

Displaying 2141-2150 on page 215 of 3722. Per Page