Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,722)
  • Open Access

    ARTICLE

    Simulation of Stress Concentration Problems by Hexahedral Hybrid-Trefftz Finite Element Models

    F.L.S. Bussamra1, E.Lucena Neto1, W.M. Ponciano1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 255-272, 2014, DOI:10.3970/cmes.2014.099.255

    Abstract Hybrid-Trefftz stress finite elements have been applied with success to the analysis of linear and non-linear problems in structural mechanics. Two independent fields are approximated: stresses within the elements and displacements on their boundary. The stress field satisfies the Trefftz constraint a priori, i.e., it is extracted from the Navier equation solution. This type of element has provided remarkable improvement in stress predictions compared to the standard displacement-based finite elements. In this work, solution of stress concentration problems is carried out by hexahedral hybrid-Trefftz stress element models. Stress concentration factors and stress intensity factors are then identified and compared with… More >

  • Open Access

    ARTICLE

    Long-term Analyses of Concrete-Filled Steel Tubular Arches Accounting for Interval Uncertainty

    Yong-Lin Pi1, Mark Andrew Bradford1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 233-253, 2014, DOI:10.3970/cmes.2014.099.233

    Abstract Creep and shrinkage of the concrete core of a concrete-filled steel tubular (CFST) arch under sustained loading are inevitable, and cause a long-term change of the equilibrium configuration of the CFST arch. As the equilibrium configuration changes continuously, the long-term radial and axial displacements of the CFST arch, stress distributions as well as the internal forces in the steel tube and the concrete core change substantially with time. Creep and shrinkage of the concrete core are related to a number of its material parameters such as its creep coefficient, aging coefficient, and shrinkage strain. The values of these parameters differ… More >

  • Open Access

    ARTICLE

    Stochastic Finite Element Method Reliability Analysis of the Corrugated I-beam Girder

    Damian Sokolowski1, Marcin Kamiński2, Michal Strakowski1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 209-231, 2014, DOI:10.3970/cmes.2014.099.209

    Abstract The main issue in this paper is to present stochastic analysis of the steel plate girder with the corrugated web subjected to Gaussian random fluctuations in its web thickness. Such an analysis is carried out using the Stochastic Finite Element Method based on the generalized stochastic perturbation technique and discretization of structure with the quadrilateral 4-noded shell finite elements. It is numerically implemented using the FEM system ABAQUS and the symbolic algebra system MAPLE, where all the probabilistic procedures are programmed. We compare the perturbation-based results with these obtained from traditional Monte-Carlo simulation and, separately, analytical solution calculated by a… More >

  • Open Access

    ARTICLE

    Large Eddy Simulation of Three Dimensional Impinging Jets

    Nadjib Ghiti1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.3, pp. 195-208, 2014, DOI:10.3970/cmes.2014.099.195

    Abstract This paper presents a large eddy simulation of three dimensional vertically impinging jet on a horizontal plate. The air impinging jet was simulated using the perturbed method based on a high vortex number in the jet inlet for different ranges of Reynolds number Re= 6000, 8000, 10000, 12000, 14000 and for the same distance between the jet and the impinging plate. The effect of the Reynolds number of the air jet impinging on a horizontal plate was studied; the study showed that the vorticity magnitude is increased with the increasing of the Reynolds number. The turbulent flow jet was decomposed… More >

  • Open Access

    ARTICLE

    Solving the Cauchy Problem of the Nonlinear Steady-state Heat Equation Using Double Iteration Process

    Weichung Yeih1,2, I-Yao Chan1, Chia-Ming Fan1, Jiang-Jhy Chang1, Chein-Shan Liu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.2, pp. 169-194, 2014, DOI:10.3970/cmes.2014.099.169

    Abstract In this paper, the Cauchy inverse problem of the nonlinear steady-state heat equation is studied. The double iteration process is used to tackle this problem in which the outer loop is developed based on the residual norm based algorithm (RNBA) while the inner loop determines the evolution direction and the modified Tikhonov's regularization method (MTRM) developed by Liu (Liu, 2012) is adopted. For the conventional iteration processes, a fixed evolution direction such as F, B−1F, BTF or αF+(1-α)BTF is used where F is the residual vector, B is the Jacobian matrix, the superscript '-1' denotes the inverse, the superscript 'T'… More >

  • Open Access

    ARTICLE

    Pore-Scale Modeling of Navier-Stokes Flow in Distensible Networks and Porous Media

    Taha Sochi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.2, pp. 151-168, 2014, DOI:10.3970/cmes.2014.099.151

    Abstract In this paper, a pore-scale network modeling method, based on the flow continuity residual in conjunction with a Newton-Raphson non-linear iterative solving technique, is proposed and used to obtain the pressure and flow fields in a network of interconnected distensible ducts representing, for instance, blood vasculature or deformable porous media. A previously derived analytical expression correlating boundary pressures to volumetric flow rate in compliant tubes for a pressure-area constitutive elastic relation has been used to represent the underlying flow model. Comparison to a preceding equivalent method, the one-dimensional Navier-Stokes finite element, was made and the results were analyzed. The advantages… More >

  • Open Access

    ARTICLE

    A Double Iteration Process for Solving the Nonlinear Algebraic Equations, Especially for Ill-posed Nonlinear Algebraic Equations

    Weichung Yeih1,2, I-Yao Chan1, Cheng-Yu Ku1, Chia-Ming Fan1, Pai-Chen Guan3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.2, pp. 123-149, 2014, DOI:10.3970/cmes.2014.099.123

    Abstract In this paper, a novel double iteration process for solving the nonlinear algebraic equations is developed. In this process, the outer iteration controls the evolution path of the unknown vector x in the selected direction u which is determined from the inner iteration process. For the inner iteration, the direction of evolution u is determined by solving a linear algebraic equation: BTBu = BTF where B is the Jacobian matrix, F is the residual vector and the superscript ''T'' denotes the matrix transpose. For an ill-posed system, this linear algebraic equation is very difficult to solve since the resulting… More >

  • Open Access

    ARTICLE

    Numerical Solution of Fractional Fredholm-Volterra Integro-Differential Equations by Means of Generalized Hat Functions Method

    Baofeng Li 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.2, pp. 105-122, 2014, DOI:10.3970/cmes.2014.099.105

    Abstract In this paper, operational matrix method based on the generalized hat functions is introduced for the approximate solutions of linear and nonlinear fractional integro-differential equations. The fractional order generalized hat functions operational matrix of integration is also introduced. The linear and nonlinear fractional integro-differential equations are transformed into a system of algebraic equations. In addition, the method is presented with error analysis. Numerical examples are included to demonstrate the validity and applicability of the approach. More >

  • Open Access

    ARTICLE

    Speedup of Elastic–Plastic Analysis of Large-scale Model with Crack Using Partitioned Coupling Method with Subcycling Technique

    Yasunori Yusa1, Shinobu Yoshimura1

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 87-104, 2014, DOI:10.3970/cmes.2014.099.087

    Abstract To speed up the elastic–plastic analysis of a large-scale model with a crack in which plasticity is observed near the crack, the partitioned coupling method is applied. In this method, the entire analysis model is decomposed into two non-overlapped domains (i.e., global and local domains), and the two domains are analyzed with an iterative method. The cracked local domain is modeled as an elastic–plastic body, whereas the large-scale global domain is modeled as an elastic body. A subcycling technique is utilized for incremental analysis to reduce the number of global elastic analyses. For a benchmark problem with 6 million degrees… More >

  • Open Access

    ARTICLE

    Computational Methods in Engineering: A Variety of Primal & Mixed Methods, with Global & Local Interpolations, for Well-Posed or Ill-Posed BCs

    L. Dong1, A. Alotaibi2, S.A. Mohiuddine2, S. N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.99, No.1, pp. 1-85, 2014, DOI:10.3970/cmes.2014.099.001

    Abstract In this expository article, a variety of computational methods, such as Collocation, Finite Volume, Finite Element, Boundary Element, MLPG (Meshless Local Petrov Galerkin), Trefftz methods, and Method of Fundamental Solutions, etc., which are often used in isolated ways in contemporary literature are presented in a unified way, and are illustrated to solve a 4th order ordinary differential equation (beam on an elastic foundation). Both the primal formulation, which considers the 4th order ODE with displacement as the primitive variable, as well as two types of mixed formulations (one resulting in a set of 2 second-order ODEs, and the other resulting… More >

Displaying 2151-2160 on page 216 of 3722. Per Page