Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7,234)
  • Open Access

    ARTICLE

    A Blockchain and CP-ABE Based Access Control Scheme with Fine-Grained Revocation of Attributes in Cloud Health

    Ye Lu1,*, Tao Feng1, Chunyan Liu2, Wenbo Zhang3

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2787-2811, 2024, DOI:10.32604/cmc.2023.046106 - 27 February 2024

    Abstract The Access control scheme is an effective method to protect user data privacy. The access control scheme based on blockchain and ciphertext policy attribute encryption (CP–ABE) can solve the problems of single—point of failure and lack of trust in the centralized system. However, it also brings new problems to the health information in the cloud storage environment, such as attribute leakage, low consensus efficiency, complex permission updates, and so on. This paper proposes an access control scheme with fine-grained attribute revocation, keyword search, and traceability of the attribute private key distribution process. Blockchain technology tracks… More >

  • Open Access

    ARTICLE

    Facial Expression Recognition with High Response-Based Local Directional Pattern (HR-LDP) Network

    Sherly Alphonse*, Harshit Verma

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2067-2086, 2024, DOI:10.32604/cmc.2024.046070 - 27 February 2024

    Abstract Although lots of research has been done in recognizing facial expressions, there is still a need to increase the accuracy of facial expression recognition, particularly under uncontrolled situations. The use of Local Directional Patterns (LDP), which has good characteristics for emotion detection has yielded encouraging results. An innovative end-to-end learnable High Response-based Local Directional Pattern (HR-LDP) network for facial emotion recognition is implemented by employing fixed convolutional filters in the proposed work. By combining learnable convolutional layers with fixed-parameter HR-LDP layers made up of eight Kirsch filters and derivable simulated gate functions, this network considerably More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    S. Jayanthi*, S. Prasanna Devi

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2137-2158, 2024, DOI:10.32604/cmc.2024.045975 - 27 February 2024

    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate… More >

  • Open Access

    ARTICLE

    Improved Data Stream Clustering Method: Incorporating KD-Tree for Typicality and Eccentricity-Based Approach

    Dayu Xu1,#, Jiaming Lü1,#, Xuyao Zhang2, Hongtao Zhang1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2557-2573, 2024, DOI:10.32604/cmc.2024.045932 - 27 February 2024

    Abstract Data stream clustering is integral to contemporary big data applications. However, addressing the ongoing influx of data streams efficiently and accurately remains a primary challenge in current research. This paper aims to elevate the efficiency and precision of data stream clustering, leveraging the TEDA (Typicality and Eccentricity Data Analysis) algorithm as a foundation, we introduce improvements by integrating a nearest neighbor search algorithm to enhance both the efficiency and accuracy of the algorithm. The original TEDA algorithm, grounded in the concept of “Typicality and Eccentricity Data Analytics”, represents an evolving and recursive method that requires… More >

  • Open Access

    ARTICLE

    An Improved Harris Hawk Optimization Algorithm for Flexible Job Shop Scheduling Problem

    Zhaolin Lv1, Yuexia Zhao2, Hongyue Kang3,*, Zhenyu Gao3, Yuhang Qin4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2337-2360, 2024, DOI:10.32604/cmc.2023.045826 - 27 February 2024

    Abstract Flexible job shop scheduling problem (FJSP) is the core decision-making problem of intelligent manufacturing production management. The Harris hawk optimization (HHO) algorithm, as a typical metaheuristic algorithm, has been widely employed to solve scheduling problems. However, HHO suffers from premature convergence when solving NP-hard problems. Therefore, this paper proposes an improved HHO algorithm (GNHHO) to solve the FJSP. GNHHO introduces an elitism strategy, a chaotic mechanism, a nonlinear escaping energy update strategy, and a Gaussian random walk strategy to prevent premature convergence. A flexible job shop scheduling model is constructed, and the static and dynamic… More >

  • Open Access

    ARTICLE

    Advanced Optimized Anomaly Detection System for IoT Cyberattacks Using Artificial Intelligence

    Ali Hamid Farea1,*, Omar H. Alhazmi1, Kerem Kucuk2

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1525-1545, 2024, DOI:10.32604/cmc.2023.045794 - 27 February 2024

    Abstract While emerging technologies such as the Internet of Things (IoT) have many benefits, they also pose considerable security challenges that require innovative solutions, including those based on artificial intelligence (AI), given that these techniques are increasingly being used by malicious actors to compromise IoT systems. Although an ample body of research focusing on conventional AI methods exists, there is a paucity of studies related to advanced statistical and optimization approaches aimed at enhancing security measures. To contribute to this nascent research stream, a novel AI-driven security system denoted as “AI2AI” is presented in this work.… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739 - 27 February 2024

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit… More >

  • Open Access

    ARTICLE

    Artificial Immune Detection for Network Intrusion Data Based on Quantitative Matching Method

    Cai Ming Liu1,2,3, Yan Zhang1,2,*, Zhihui Hu1,2, Chunming Xie1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2361-2389, 2024, DOI:10.32604/cmc.2023.045282 - 27 February 2024

    Abstract Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods. This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method. The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements. Then, to improve the accuracy of similarity calculation, a quantitative matching method is proposed. The model uses mathematical methods to train and evolve immune More >

  • Open Access

    ARTICLE

    Machine Learning Techniques Using Deep Instinctive Encoder-Based Feature Extraction for Optimized Breast Cancer Detection

    Vaishnawi Priyadarshni1, Sanjay Kumar Sharma1, Mohammad Khalid Imam Rahmani2,*, Baijnath Kaushik3, Rania Almajalid2,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2441-2468, 2024, DOI:10.32604/cmc.2024.044963 - 27 February 2024

    Abstract Breast cancer (BC) is one of the leading causes of death among women worldwide, as it has emerged as the most commonly diagnosed malignancy in women. Early detection and effective treatment of BC can help save women’s lives. Developing an efficient technology-based detection system can lead to non-destructive and preliminary cancer detection techniques. This paper proposes a comprehensive framework that can effectively diagnose cancerous cells from benign cells using the Curated Breast Imaging Subset of the Digital Database for Screening Mammography (CBIS-DDSM) data set. The novelty of the proposed framework lies in the integration of More >

  • Open Access

    ARTICLE

    Performance Comparison of Hyper-V and KVM for Cryptographic Tasks in Cloud Computing

    Nader Abdel Karim1,*, Osama A. Khashan2,*, Waleed K. Abdulraheem3, Moutaz Alazab1, Hasan Kanaker4, Mahmoud E. Farfoura5, Mohammad Alshinwan5,6

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2023-2045, 2024, DOI:10.32604/cmc.2023.044304 - 27 February 2024

    Abstract As the extensive use of cloud computing raises questions about the security of any personal data stored there, cryptography is being used more frequently as a security tool to protect data confidentiality and privacy in the cloud environment. A hypervisor is a virtualization software used in cloud hosting to divide and allocate resources on various pieces of hardware. The choice of hypervisor can significantly impact the performance of cryptographic operations in the cloud environment. An important issue that must be carefully examined is that no hypervisor is completely superior in terms of performance; Each hypervisor… More >

Displaying 2091-2100 on page 210 of 7234. Per Page