Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (936)
  • Open Access

    ARTICLE

    Deep Convolutional Neural Networks for Accurate Classification of Gastrointestinal Tract Syndromes

    Zahid Farooq Khan1, Muhammad Ramzan1,*, Mudassar Raza1, Muhammad Attique Khan2,3, Khalid Iqbal4, Taerang Kim5, Jae-Hyuk Cha5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1207-1225, 2024, DOI:10.32604/cmc.2023.045491

    Abstract Accurate detection and classification of artifacts within the gastrointestinal (GI) tract frames remain a significant challenge in medical image processing. Medical science combined with artificial intelligence is advancing to automate the diagnosis and treatment of numerous diseases. Key to this is the development of robust algorithms for image classification and detection, crucial in designing sophisticated systems for diagnosis and treatment. This study makes a small contribution to endoscopic image classification. The proposed approach involves multiple operations, including extracting deep features from endoscopy images using pre-trained neural networks such as Darknet-53 and Xception. Additionally, feature optimization utilizes the binary dragonfly algorithm… More >

  • Open Access

    ARTICLE

    Design of a Lightweight Compressed Video Stream-Based Patient Activity Monitoring System

    Sangeeta Yadav1, Preeti Gulia1,*, Nasib Singh Gill1,*, Piyush Kumar Shukla2, Arfat Ahmad Khan3, Sultan Alharby4, Ahmed Alhussen4, Mohd Anul Haq5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1253-1274, 2024, DOI:10.32604/cmc.2023.042869

    Abstract Inpatient falls from beds in hospitals are a common problem. Such falls may result in severe injuries. This problem can be addressed by continuous monitoring of patients using cameras. Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient. Along with fall detection, monitoring of different activities of the patients is also of significant concern to assess the improvement in their health. High computation-intensive models are required to monitor every action of the patient precisely. This requirement limits the applicability of such networks. Hence, to keep the model lightweight, the already designed… More >

  • Open Access

    ARTICLE

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

    Zhou Ji1, Mengmeng Zhou2, Qiang Wang2, Jiandong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1557-1582, 2024, DOI:10.32604/cmes.2023.046025

    Abstract To improve the prediction accuracy of the International Roughness Index (IRI) of Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP), a machine learning approach is developed in this study for the modelling, combining an improved Beetle Antennae Search (MBAS) algorithm and Random Forest (RF) model. The 10-fold cross-validation was applied to verify the reliability and accuracy of the model proposed in this study. The importance scores of all input variables on the IRI of JPCP and CRCP were analysed as well. The results by the comparative analysis showed the prediction accuracy of the IRI of the newly… More > Graphic Abstract

    Predicting the International Roughness Index of JPCP and CRCP Rigid Pavement: A Random Forest (RF) Model Hybridized with Modified Beetle Antennae Search (MBAS) for Higher Accuracy

  • Open Access

    ARTICLE

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

    Xuechuan Wang1, Wei He1,*, Haoyang Feng1, Satya N. Atluri2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1263-1294, 2024, DOI:10.32604/cmes.2023.043068

    Abstract Although predictor-corrector methods have been extensively applied, they might not meet the requirements of practical applications and engineering tasks, particularly when high accuracy and efficiency are necessary. A novel class of correctors based on feedback-accelerated Picard iteration (FAPI) is proposed to further enhance computational performance. With optimal feedback terms that do not require inversion of matrices, significantly faster convergence speed and higher numerical accuracy are achieved by these correctors compared with their counterparts; however, the computational complexities are comparably low. These advantages enable nonlinear engineering problems to be solved quickly and accurately, even with rough initial guesses from elementary predictors.… More > Graphic Abstract

    Fast and Accurate Predictor-Corrector Methods Using Feedback-Accelerated Picard Iteration for Strongly Nonlinear Problems

  • Open Access

    ARTICLE

    Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue Problems

    Chein-Shan Liu1, Jian-Hung Shen2, Chung-Lun Kuo1, Yung-Wei Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1317-1335, 2024, DOI:10.32604/cmes.2023.030618

    Abstract This study sets up two new merit functions, which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems. For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less, where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector. 1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues. Simultaneously, the real… More >

  • Open Access

    ARTICLE

    The Effect of Soil Enzymes and Polysaccharides Secreted by the Roots of Salvia miltiorrhiza Bunge under Drought, High Temperature, and Nitrogen and Phosphorus Deficits

    Yong Qin1,2, Xiaoyu Li1,2, Yanhong Wu1,2, Hai Wang3, Guiqi Han1,2,3, Zhuyun Yan1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.1, pp. 119-135, 2024, DOI:10.32604/phyton.2023.046075

    Abstract Root exudates serve as crucial mediators for information exchange between plants and soil, and are an important evolutionary mechanism for plants’ adaptation to environmental changes. In this study, 15 different abiotic stress models were established using various stress factors, including drought (D), high temperature (T), nitrogen deficiency (N), phosphorus deficiency (P), and their combinations. We investigated their effects on the seedling growth of Salvia miltiorrhiza Bunge and the activities of Solid-Urease (S-UE), Solid-Nitrite Reductase (S-NiR), Solid-Nitrate Reductase (S-NR), Solid-Phosphotransferase (S-PT), and Solid-Catalase (S-CAT), as well as the contents of polysaccharides in the culture medium. The results showed that the growth… More >

  • Open Access

    ARTICLE

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

    Bo Chen1, Mingjun Wang2, Bo Liu3,*, Chunping Lu4, Guohai Jia1, Yong Chao5, Chao Zhong1

    Journal of Renewable Materials, Vol.12, No.1, pp. 119-129, 2024, DOI:10.32604/jrm.2023.031521

    Abstract In order to study the combustion characteristics of tar in biomass gasifier inner wall and gasification gas, “tobacco stem semi-tar inside furnace”, “tobacco stem tar inside furnace” and “tobacco stem tar out-of-furnace” were subjected to thermogravimetric experiments, and the combustion characteristics and kinetic characteristics were analyzed. The result shows that “tobacco stem semi-tar inside furnace” has the highest value and “tobacco stem tar out-of-furnace” is has the lowest value on ignition characteristics, combustion characteristics and combustible stability; “tobacco stem semi-tar inside furnace” has the lowest value and “tobacco stem tar outside furnace” has the highest value on burnout characteristics; “tobacco… More > Graphic Abstract

    Comparison of Combustion Characteristics of Tars Produced with Tobacco Stem Biomass Gasification

  • Open Access

    PROCEEDINGS

    The Method of Moments for Electromagnetic Scattering Analysis Accelerated by the Polynomial Chaos Expansion in Infinite Domains

    Yujing Ma1,*, Leilei Chen2,3, Haojie Lian3,4, Zhongwang Wang2,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.28, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010585

    Abstract An efficient method of moments (MoM) based on polynomial chaos expansion(PCE) is applied to quickly calculate the electromagnetic scattering problems. The triangle basic functions are used to discretize the surface integral equations. The PCE is utilized to accelerate the MoM by constructing a surrogate model for univariate and bivariate analysis[1]. The mathematical expressions of the surrogate model for the radar cross-section (RCS) are established by considering uncertain parameters such as bistatic angle, incident frequency, and dielectric constant[2,3]. By using the example of a scattering cylinder with analytical solution, it is verified that the MoM accelerated by PCE presents a considerable… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on ESGMD-CC and AFSA-ELM

    Jiajie He1,2, Fuzheng Liu3, Xiangyi Geng3, Xifeng Liang1, Faye Zhang3,*, Mingshun Jiang3

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 37-54, 2024, DOI:10.32604/sdhm.2023.029428

    Abstract Incomplete fault signal characteristics and ease of noise contamination are issues with the current rolling bearing early fault diagnostic methods, making it challenging to ensure the fault diagnosis accuracy and reliability. A novel approach integrating enhanced Symplectic geometry mode decomposition with cosine difference limitation and calculus operator (ESGMD-CC) and artificial fish swarm algorithm (AFSA) optimized extreme learning machine (ELM) is proposed in this paper to enhance the extraction capability of fault features and thus improve the accuracy of fault diagnosis. Firstly, SGMD decomposes the raw vibration signal into multiple Symplectic geometry components (SGCs). Secondly, the iterations are reset by the… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas

    Hongzhi Xu1,2, Jian Wang1,3, Shuxia Li1,*, Fengrui Zhao1, Chengwen Wang1, Yang Guo1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.3, pp. 505-523, 2024, DOI:10.32604/fdmp.2023.030604

    Abstract Natural gas hydrate (NGH) is generally produced and accumulated together with the underlying conventional gas. Therefore, optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate. In this study, three types of models accounting for the coexistence of these gases are considered. Type A considers the upper hydrate-bearing layer (HBL) adjacent to the lower conventional gas layer (CGL); with the Type B a permeable interlayer exists between the upper HBL and the lower CGL; with the type C there is an impermeable interlayer between the… More >

Displaying 41-50 on page 5 of 936. Per Page