Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (117)
  • Open Access

    ARTICLE

    Research of Mechanical and Thermal Properties of Composite Material Based on Gypsum and Straw

    Nikola Vavřínová*, Kateřina Stejskalová, Jiří Teslík, Kateřina Kubenková, Jiří Majer

    Journal of Renewable Materials, Vol.10, No.7, pp. 1859-1873, 2022, DOI:10.32604/jrm.2022.018908

    Abstract This article is focused on the investigation of the mechanical and thermal properties of composite material that could be used for the production of plaster or plasterboards. This composite material is made of gypsum and reinforcing natural fibers. The article verifies whether this natural reinforcement can improve the investigated properties compared to conventional plasters and gypsum plasterboards made of pure gypsum. From this composite material, high-strength plasterboards could then be produced, which meet the higher demands of users than conventional gypsum plasterboards. For their production, natural waste materials would be used efficiently. As part of the development of new building… More >

  • Open Access

    ARTICLE

    Kalman Filter Estimation of Lithium Battery SOC Based on Model Capacity Updating

    Min Deng1, Quan Min1, Ge Yang1, Man Yu2,3,*

    Energy Engineering, Vol.119, No.2, pp. 739-754, 2022, DOI:10.32604/ee.2022.018025

    Abstract High-precision estimation of lithium battery SOC can effectively optimize vehicle energy management, improve lithium battery safety protection, extend lithium battery cycle life, and reduce new energy vehicle costs. Based on the forgetting factor recursive least square method (FFRLS), Thevenin equivalent circuit model and Singular Value Decomposition-Unscented Kalman Filter (SVD-UKF), the SVD-UKF combined lithium battery SOC estimation algorithm with model capacity update is proposed, aiming at further improving the SOC estimation accuracy of lithium battery. The parameter identification of Thevenin model is studied by using the forgetting factor recursive least square method. To overcoming the shortcomings of Kalman filter linearization error… More >

  • Open Access

    ARTICLE

    Study on the Fire Behavior of Sandwich Wall Panels with GFRP Skins and a Wood-Web Core

    Guangjun Sun, Chuting Wang, Lu Wang*

    Journal of Renewable Materials, Vol.10, No.6, pp. 1537-1553, 2022, DOI:10.32604/jrm.2022.018598

    Abstract To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire, three sandwich walls were tested. One of them was used for static load test and the other two for the one-side fire tests. Besides, temperature probe points were set on the sandwich walls to obtain the temperature distribution. Meanwhile, the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent. The temperature distribution and performance reduction of materials were also considered. The residual bearing capacity of… More >

  • Open Access

    ARTICLE

    Sum Rate Maximization-based Fair Power Allocation in Downlink NOMA Networks

    Mohammed Abd-Elnaby*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5099-5116, 2022, DOI:10.32604/cmc.2022.022020

    Abstract Non-orthogonal multiple access (NOMA) has been seen as a promising technology for 5G communication. The performance optimization of NOMA systems depends on both power allocation (PA) and user pairing (UP). Most existing researches provide sub-optimal solutions with high computational complexity for PA problem and mainly focuses on maximizing the sum rate (capacity) without considering the fairness performance. Also, the joint optimization of PA and UP needs an exhaustive search. The main contribution of this paper is the proposing of a novel capacity maximization-based fair power allocation (CMFPA) with low-complexity in downlink NOMA. Extensive investigation and analysis of the joint impact… More >

  • Open Access

    ARTICLE

    Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment

    Xiaozheng Sun1,*, Yu Yang1, Qiang He2, Jianye Li1, Rui Li1, Haitao Chen1

    Journal of Renewable Materials, Vol.10, No.3, pp. 751-766, 2022, DOI:10.32604/jrm.2022.016933

    Abstract The accumulation of Cu2+ in water is a potential threat to human health and environment. Dicarboxylic nanocellulose (DNC) with rich carboxyl groups was prepared through the NaIO4–NaClO2 sequential oxidation method to efficiently remove copper ions, and the Cu2+ adsorption properties and cost were studied. The maximum adsorption capacity reached 184.2 mg/g at pH 6 and an adsorbent dose of 5 g/L. Theoretically, the maximum adsorption capacities of monocarboxylic nanocellulose (MNC), DNC, and tricarboxylic nanocellulose (TNC) with carboxyl groups as the main adsorption sites were calculated to be 228.7, 261.3, and 148.1 mg/g, respectively. The Cu2+ adsorption costs of MNC, DNC, and TNC were… More > Graphic Abstract

    Adsorption Properties and Cost of Dicarboxylic Nanocellulose on Copper Ions for Wastewater Treatment

  • Open Access

    ARTICLE

    Flow-Shop Scheduling with Transportation Capacity and Time Consideration

    Chia-Nan Wang1, Glen Andrew Porter2, Ching-Chien Huang3,*, Viet Tinh Nguyen4, Syed Tam Husain4

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 3031-3048, 2022, DOI:10.32604/cmc.2022.020222

    Abstract Planning and scheduling is one of the most important activity in supply chain operation management. Over the years, there have been multiple researches regarding planning and scheduling which are applied to improve a variety of supply chains. This includes two commonly used methods which are mathematical programming models and heuristics algorithms. Flowshop manufacturing systems are seen normally in industrial environments but few have considered certain constraints such as transportation capacity and transportation time within their supply chain. A two-stage flowshop of a single processing machine and a batch processing machine are considered with their capacity and transportation time between two… More >

  • Open Access

    ARTICLE

    Quantifying Contribution of DER-Integrated EV Parking Lots to Reliability of Power Distribution Systems

    Bo Zeng*, Yixian Liu, Yangfan Luo

    Energy Engineering, Vol.118, No.6, pp. 1713-1728, 2021, DOI:10.32604/EE.2021.016678

    Abstract In the future smart cities, parking lots (PLs) can accommodate hundreds of electric vehicles (EVs) at the same time. This trend creates an opportunity for PLs to serve as a potential flexibility resource, considering growing penetration of EVs and integration of distributed energy resources DER (such as photovoltaic and energy storages). Given this background, this paper proposes a comprehensive evaluation framework to investigate the potential role of DER-integrated PLs (DPL) with the capability of vehicle-to-grid (V2G) in improving the reliability of the distribution network. For this aim, first, an overview for the distribution system with DPLs is provided. Then, a… More >

  • Open Access

    REVIEW

    Review on Wind Power Development and Relevant Policies between China and Japan

    Lei Wang1, Zekun Wang2,3,4,*, Yingjian Yang2, Shuni Zhou5, Yehong Dong5, Fanghong Zhang5

    Energy Engineering, Vol.118, No.6, pp. 1611-1626, 2021, DOI:10.32604/EE.2021.016010

    Abstract China has abundant wind energy resources and huge development potential among developing countries. Japan is a developed country that planned to increase the use of renewable energy, especially wind energy. This research is aimed at reviewing the development of wind power and relevant policies between China and Japan. Firstly, we introduced the current status of global wind power development, such as the global installed capacity of wind power. The annual development of wind power generation in China and Japan is compared, and the distribution characteristics of wind resources are compared. Furthermore, the market share in China and Japan is introduced.… More >

  • Open Access

    ARTICLE

    Experimental Study on the Axial Compression Behavior of Short Columns of Steel-Fiber-Reinforced Recycled Aggregate Concrete

    Chunyang Liu1,2,*, Jia Xu1, Yifan Gu1, Ruofan Shi1

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.6, pp. 1129-1142, 2021, DOI:10.32604/fdmp.2021.017376

    Abstract In order to study the axial compression performances of short columns made of recycled aggregate concrete, four samples were designed with different recycled aggregate replacement rates and carbon fibre reinforced plastics (CFRP) sheets. Then, monotonic loading was implemented to assess the variation trends of their axial compression properties. The ABAQUS finite element software was also used to determined the compression performances. Good agreement between experimental and numerical results has been found for the different parameters being considered. As shown by the results, recycled coarse aggregates result in improved ductility and better deformation performance of the specimens. The failure of specimens… More >

  • Open Access

    ARTICLE

    Utilization of Machine Learning Methods in Modeling Specific Heat Capacity of Nanofluids

    Mamdouh El Haj Assad1, Ibrahim Mahariq2, Raymond Ghandour2, Mohammad Alhuyi Nazari3, Thabet Abdeljawad4,5,6,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 361-374, 2022, DOI:10.32604/cmc.2022.019048

    Abstract Nanofluids are extensively applied in various heat transfer mediums for improving their heat transfer characteristics and hence their performance. Specific heat capacity of nanofluids, as one of the thermophysical properties, performs principal role in heat transfer of thermal mediums utilizing nanofluids. In this regard, different studies have been carried out to investigate the influential factors on nanofluids specific heat. Moreover, several regression models based on correlations or artificial intelligence have been developed for forecasting this property of nanofluids. In the current review paper, influential parameters on the specific heat capacity of nanofluids are introduced. Afterwards, the proposed models for their… More >

Displaying 51-60 on page 6 of 117. Per Page