Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,946)
  • Open Access

    ARTICLE

    A Novel Steganography Scheme Combining Coverless Information Hiding and Steganography

    Ruohan Meng1,2, Zhili Zhou1,2, Qi Cui1,2, Xingming Sun1,2,*, Chengsheng Yuan1,2,3

    Journal of Information Hiding and Privacy Protection, Vol.1, No.1, pp. 43-48, 2019, DOI:10.32604/jihpp.2019.05797

    Abstract At present, the coverless information hiding has been developed. However, due to the limited mapping relationship between secret information and feature selection, it is challenging to further enhance the hiding capacity of coverless information hiding. At the same time, the steganography algorithm based on object detection only hides secret information in foreground objects, which contribute to the steganography capacity is reduced. Since object recognition contains multiple objects and location, secret information can be mapped to object categories, the relationship of location and so on. Therefore, this paper proposes a new steganography algorithm based on object detection and relationship mapping, which… More >

  • Open Access

    ARTICLE

    An Influence Maximization Algorithm Based on the Influence Propagation Range of Nodes

    Yong Hua1,Bolun Chen1,2,∗,Yan Yuan1, Guochang Zhu1, Fenfen Li1

    Journal on Internet of Things, Vol.1, No.2, pp. 77-88, 2019, DOI:10.32604/jiot.2019.05941

    Abstract The problem of influence maximization in the social network G is to find k seed nodes with the maximum influence. The seed set S has a wider range of influence in the social network G than other same-size node sets. The influence of a node is usually established by using the IC model (Independent Cascade model) with a considerable amount of Monte Carlo simulations used to approximate the influence of the node. In addition, an approximate effect (1-1/e) is obtained, when the number of Monte Carlo simulations is 10000 and the probability of propagation is very small. In this paper,… More >

  • Open Access

    ARTICLE

    Low-Dose CT Image Denoising Based on Improved WGAN-gp

    Xiaoli Li1,*, Chao Ye1, Yujia Yan2, Zhenlong Du1

    Journal of New Media, Vol.1, No.2, pp. 75-85, 2019, DOI:10.32604/jnm.2019.06259

    Abstract In order to improve the quality of low-dose computational tomography (CT) images, the paper proposes an improved image denoising approach based on WGAN-gp with Wasserstein distance. For improving the training and the convergence efficiency, the given method introduces the gradient penalty term to WGAN network. The novel perceptual loss is introduced to make the texture information of the low-dose images sensitive to the diagnostician eye. The experimental results show that compared with the state-of-art methods, the time complexity is reduced, and the visual quality of low-dose CT images is significantly improved. More >

  • Open Access

    ARTICLE

    T Application of MES System in the Safety Management of Offshore Oil and Gas Fields

    Yong Chen1,*, Lei Cui1, Chong Wang2

    Journal of Quantum Computing, Vol.1, No.1, pp. 41-48, 2019, DOI:10.32604/jqc.2019.06283

    Abstract In order to solve the problem of data island in the safety management of offshore oil and gas fields, take full advantage of data for subsequent analysis and development, and support production safety management of oil and gas fields, the MES, which is maturely applied in manufacturing and downstream production of CNOOC (China National Offshore Oil Corporation), is introduced by the petroleum administration at the eastern South China sea. The system adopts the real-time database and relational database to collect the scattered structured data, such as evidence information of offshore oil and gas production facilities personnel, on-site hidden danger information… More >

  • Open Access

    ARTICLE

    Anisotropic Visco-Elastoplastic Modeling of Quasi-Unidirectional Flax Fiber Reinforced Epoxy Behavior: An Investigation on Low-Velocity Impact Response

    Marwa Abida1,2, Jamel Mars3,*, Florian Gehring1, Alexandre Vivet1, Fakhreddine Dammak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 464-476, 2018, DOI:10.32604/JRM.2018.01897

    Abstract Based on experimental test results, flax fiber reinforced polymer composites are characterized by nonlinear visco-elastoplastic behavior. The aim of this work is to model the quasi-unidirectional flax fiber reinforced composite behavior through a three dimensional formulation with orthotropic elasticity and orthotropic plasticity using Hill criterion. The isotropic hardening and Johnson Cook parameters are identified from unidirectional tensile tests at different strain rates. The adjustment of Hill’s yield criterion is developed based on yield stresses obtained in tensile tests at different directions. The numerical integration of the constitutive equations is implemented in a user-defined material, UMAT subroutines for the commercial finite… More >

  • Open Access

    ARTICLE

    Mechanical and Thermal Properties of Sugar Palm Fiber Reinforced Thermoplastic Polyurethane Composites: Effect of Silane Treatment and Fiber Loading

    A. Atiqah1, M. Jawaid1,*, S. M. Sapuan1,2, M. R. Ishak3

    Journal of Renewable Materials, Vol.6, No.5, pp. 477-492, 2018, DOI:10.7569/JRM.2017.634188

    Abstract The aim of the present study was to develop sugar palm fiber (SPF) reinforced thermoplastic polyurethane (TPU) composites and to investigate the effects of fiber surface modification by 2% silane treatment and fiber loading (0, 10, 20, 30, 40 and 50 wt%) on the mechanical and thermal properties of the obtained composites. Surface treatment was employed to improve the fiber-matrix interface, which was expected to boost the mechanical strength of the composites, in terms of tensile, flexural and impact properties. Thermal properties were also investigated by thermal gravimetric analysis (TGA) and dynamic mechanical analysis (DMA) to assess the thermal stability… More >

  • Open Access

    ARTICLE

    Isolation and Characterization of Nanocellulose Obtained from Industrial Crop Waste Resources by Using Mild Acid Hydrolysis

    Galia Moreno, Karla Ramirez, Marianelly Esquivel, Guillermo Jimenez*

    Journal of Renewable Materials, Vol.6, No.4, pp. 362-369, 2018, DOI:10.7569/JRM.2017.634167

    Abstract Cellulose, microcrystalline cellulose and nanocellulose were prepared from three agricultural waste resources: pineapple leaf (PALF), banana rachis (BR), and sugarcane bagasse (SCB). Each waste resource was first converted into microcrystalline cellulose which was subsequently converted into cellulose nanoparticles by using mild (30% w/v) and strong (60% w/v) sulfuric acid concentrations for extraction. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) were used to characterize each waste resource and extracted cellulosic materials. Furthermore, nanocelluloses were studied by zeta potential, size analysis, and transmission electron microscopy (TEM). Cellulose nanowhiskers were successfully obtained and isolated with a 33% average… More >

  • Open Access

    ARTICLE

    The Effects of Accelerated Photooxidation on Molecular Weight and Thermal and Mechanical Properties of PHBV/Cloisite 30B Bionanocomposites

    Kahina Iggui1,2,*,†, Mustapha Kaci2, Nicolas Le Moigne1, Anne Bergeret1

    Journal of Renewable Materials, Vol.6, No.3, pp. 288-298, 2018, DOI:10.7569/JRM.2017.634184

    Abstract The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B (3 wt%) bionanocomposites are investigated herein. Through size exclusion chromatography (SEC) analysis, a significant decrease in both weight and number average molecular weights was observed for all irradiated samples over time, resulting from the chain scission mechanism. Differential scanning calorimetry (DSC) data indicated a decrease in degree of crystallinity and melting temperature after UV exposure, with the appearance of double melting peaks related to the changes in the crystal structure of PHBV. Thermal stability, tensile and thermo-mechanical properties were also… More >

  • Open Access

    ARTICLE

    Enzymatic Conversion of Sugarcane Lignocellulosic Biomass as a Platform for the Production of Ethanol, Enzymes and Nanocellulose

    Cristiane S. Farinas*, José Manoel Marconcini, Luiz Henrique C. Mattoso

    Journal of Renewable Materials, Vol.6, No.2, pp. 203-216, 2018, DOI:10.7569/JRM.2017.6341578

    Abstract The conversion of sugarcane lignocellulosic biomass into fuels, chemicals and high-value materials using the biochemical pathway is considered the most sustainable alternative for the implementation of future biorefineries. Actually, the first large-scale cellulosic ethanol plants that have started operating worldwide apply the enzymatic hydrolysis process to convert biomass into simple sugars that are fermented to ethanol by yeasts. However, several technological challenges still need to be addressed in order to obtain commercially competitive products. This review describes current challenges and perspectives regarding the enzymatic hydrolysis step for processing sugarcane lignocellulosic biomass within the biorefinery. Recent developments in terms of process… More >

  • Open Access

    ARTICLE

    Microfibrillated Cellulose from Sugarcane Bagasse as a Biorefinery Product for Ethanol Production

    Rafael Grande1*, Eliane Trovatti2, Maria Tereza B. Pimenta3, Antonio J. F. Carvalho1

    Journal of Renewable Materials, Vol.6, No.2, pp. 195-202, 2018, DOI:10.7569/JRM.2018.634109

    Abstract Research involving the preparation of microfibrillated cellulose (MFC) from sugarcane bagasse is a relevant topic to the production of new nanomaterials and more accessible cellulose substrates for the production of second generation ethanol. Regarding the transformation of cellulose into glucose, the precursor of second generation ethanol, this nanosized cellulosic substrate represents a more appropriate material for the chemical hydrolysis process. The high aspect ratio of MFC improves hydrolysis, requiring mild conditions and decreasing the generation of by-products. Here, MFC was prepared from sugarcane bagasse by ultrasound defibrillation. This material was oxidized with 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) to produce negatively charged high defibrillated… More >

Displaying 2431-2440 on page 244 of 2946. Per Page