Anastasia Vylegzhanina1,2, Irina Shalaginova2,*, Dana Korolevich1, Dmitry Katserov1, Alexandra Semenova1, Maria Sidorova1, Sergey Eresko3, Marat Airapetov3, Marina Pavlova2, Anna Levina2, Natalia Dyuzhikova2
BIOCELL, Vol.49, No.10, pp. 2007-2031, 2025, DOI:10.32604/biocell.2025.071198
- 22 October 2025
Abstract Objectives: Chronic stress can trigger neuroinflammation and gut microbiota alterations, contributing to post-stress disorders. Individual differences in stress responses, shaped by genetic and physiological factors, require better characterization. We aimed to investigate the long-term effects of chronic stress in rats selectively bred for high and low nervous system excitability. Methods: Adult male rats from two strains selectively bred for high (HT) and low (LT) excitability thresholds of the nervous system underwent a 15-day chronic emotional-pain stress protocol. Behavioral assessments (elevated plus maze), cytokine levels (TNF, IL-1β, IL-6, IL-10) in the hippocampus and amygdala measured by… More >