Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    Multi-Layer Graph Generative Model Using AutoEncoder for Recommendation Systems

    Syed Falahuddin Quadri1, Xiaoyu Li1,*, Desheng Zheng2, Muhammad Umar Aftab1, Yiming Huang3

    Journal on Big Data, Vol.1, No.1, pp. 1-7, 2019, DOI:10.32604/jbd.2019.05899

    Abstract Given the glut of information on the web, it is crucially important to have a system, which will parse the information appropriately and recommend users with relevant information, this class of systems is known as Recommendation Systems (RS)-it is one of the most extensively used systems on the web today. Recently, Deep Learning (DL) models are being used to generate recommendations, as it has shown state-of-the-art (SoTA) results in the field of Speech Recognition and Computer Vision in the last decade. However, the RS is a much harder problem, as the central variable in the recommendation system’s environment is the… More >

  • Open Access

    ARTICLE

    A Survey on Machine Learning Algorithms in Little-Labeled Data for Motor Imagery-Based Brain-Computer Interfaces

    Yuxi Jia1, Feng Li1,2, Fei Wang1,2,*, Yan Gui1,2,3

    Journal of Information Hiding and Privacy Protection, Vol.1, No.1, pp. 11-21, 2019, DOI:10.32604/jihpp.2019.05979

    Abstract The Brain-Computer Interfaces (BCIs) had been proposed and used in therapeutics for decades. However, the need of time-consuming calibration phase and the lack of robustness, which are caused by little-labeled data, are restricting the advance and application of BCI, especially for the BCI based on motor imagery (MI). In this paper, we reviewed the recent development in the machine learning algorithm used in the MI-based BCI, which may provide potential solutions for addressing the issue. We classified these algorithms into two categories, namely, and enhancing the representation and expanding the training set. Specifically, these methods of enhancing the representation of… More >

  • Open Access

    REVIEW

    Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review

    Ronald Sabo1*, Aleksey Yermakov2, Chiu Tai Law3, Rani Elhajjar4

    Journal of Renewable Materials, Vol.4, No.5, pp. 297-312, 2016, DOI:10.7569/JRM.2016.634114

    Abstract Cellulose nanomaterials have a number of interesting and unique properties that make them well-suited for use in electronics applications such as energy harvesting devices, actuators and sensors. Cellulose nanofibrils and nanocrystals have good mechanical properties, high transparency, and low coefficient of thermal expansion, among other properties that facilitate both active and inactive roles in electronics and related devices. For example, these nanomaterials have been demonstrated to operate as substrates for flexible electronics and displays, to improve the efficiency of photovoltaics, to work as a component of magnetostrictive composites and to act as a suitable lithium ion battery separator membrane. A… More >

  • Open Access

    ARTICLE

    Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile

    Shengcai Li1,*, Jun Tang1,2, Lin Guo3

    Structural Durability & Health Monitoring, Vol.13, No.1, pp. 61-84, 2019, DOI:10.32604/sdhm.2019.06058

    Abstract The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring, surface horizontal displacement and vertical displacement monitoring, deep horizontal displacement (inclinometer) monitoring, soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi, Fujian Province. The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared. The results show that the use of controlled cement grouting mould-bag pile technology is to… More >

  • Open Access

    ARTICLE

    Ductility and Ultimate Capacity of Concrete-Filled Lattice Rectangular Steel Tube Columns

    Chengquan Wang1, Yun Zou1,*, Tianqi Li1, Jie Ding1, Xiaoping Feng1, Tiange Lei1

    Structural Durability & Health Monitoring, Vol.12, No.2, pp. 99-110, 2018, DOI: 10.3970/sdhm.2018.02061

    Abstract A kind of concrete-filled lattice rectangular steel tube (CFLRST) column was put forward. The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column. By comparing the load-deformation curves from the test results, the rationality and reliability of the finite element model has been confirmed, moreover, the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed. Based on the model, the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete (RC) column were also analyzed. The results of the finite element analysis… More >

  • Open Access

    ARTICLE

    A Coupled Friction-Poroelasticity Model of Chimneying Shows that Confined Cells Can Mechanically Migrate Without Adhesions

    Solenne Mondésert-Deveraux1, *, Rachele Allena2, Denis Aubry1

    Molecular & Cellular Biomechanics, Vol.15, No.3, pp. 155-176, 2018, DOI: 10.3970/mcb.2018.03053

    Abstract Cell migration is the cornerstone of many biological phenomena such as cancer metastasis, immune response or organogenesis. Adhesion-based motility is the most renown and examined motility mode, but in an adhesion-free confined environment or simply to achieve a higher migration speed, cells can adopt a very interesting bleb-based migration mode called “chimneying”. This mode rests on the sharp synchronization between the active contraction of the cells uropod and the passive friction force between the cell and the confining surface. In this paper, we propose a one dimensional poroelastic model of chimneying which considers the active strains of the cell, but,… More >

  • Open Access

    ARTICLE

    A Coupled Mathematical Model of Cell Migration, Vessel Cooption and Tumour Microenvironment during the Initiation of Micrometastases

    Yan Cai1,2,3, Jie Wu4, Zhiyong Li1,2

    Molecular & Cellular Biomechanics, Vol.12, No.4, pp. 231-248, 2015, DOI:10.3970/mcb.2015.012.231

    Abstract We propose a coupled mathematical model for the detailed quantitative analyses of initial microtumour and micrometastases formation by including cancer cell migration, host vessel cooption and changes in microenvironment. Migrating cells are included as a new phenotype to describe the migration behaviour of malignant tumour cells. Migration probability of a migrating cell is assumed to be influenced by local chemical microenvironment. Pre-existing vessel cooption and remodelling are introduced according to the local haemodynamical microenvironment, such as interstitial pressure and vessel wall permeability. After the tumour cells and tumour vessels distribution are updated, the chemical substances are coupled calculated with the… More >

  • Open Access

    ARTICLE

    Design of the Optocoupler Applied to Medical Lighting Systems

    Xibin Yang*, Rui Li†,‡, Jianfeng Zhu*, Daxi Xiong*

    Molecular & Cellular Biomechanics, Vol.9, No.4, pp. 285-294, 2012, DOI:10.3970/mcb.2012.009.285

    Abstract A new type of optocoupler applied to medical lighting system is proposed, and the principle, Etendue and design process is introduced. With the help of Tracrpro, modeling and simulation of the optocoupler is conducted and the parameters are optimized. Analysis of factors affecting the energy coupling efficiency is done. With a view towards the development of Ultra High Brightness Light Emitting Diodes (UHB-LEDs), which play an important role a new sources of lighting in various biomedical devices, including those used in diagnosis and treatment, a series of simulations are executed and a variety of solutions are achieved. According to simulation… More >

  • Open Access

    ARTICLE

    On p21 Tracking Property in Cancer Cell Unravelled Bio-Digitally in silico. Are Apoptosis Principles Universal?

    R. M. Ardito Marretta∗,†, G. Barbaraci

    Molecular & Cellular Biomechanics, Vol.7, No.3, pp. 135-164, 2010, DOI:10.3970/mcb.2010.007.135

    Abstract Upon severe DNA damage, p21 acts in a dual mode; on the one hand, it inhibits the cyclin-CDK complex for arresting the G2/M transition and on the other hand, it indirectly becomes an apoptotic factor by activating - in sequence - the retinoblastoma protein, E2F1 and APAF1 expressions. But, in a cancer cells proliferation, the mechanisms of, and participants in, the apoptosis failure remain unclear. Since the p21/p53/Mdm2 proteins network normally involves a digital response in a cancer cell, through an original design of a cell signalling-protein simulator, we demonstrate,in silico, that apoptosis phase instability is fully reciprocated by p21mRNA… More >

  • Open Access

    ARTICLE

    Evaluation of Compliance of Arterial Vessel Using Coupled Fluid Structure Interaction Analysis

    Abhijit Sinha Roy*, Lloyd H. Back, Rupak K. Banerjee

    Molecular & Cellular Biomechanics, Vol.5, No.4, pp. 229-246, 2008, DOI:10.3970/mcb.2008.005.229

    Abstract The in vivo and ex vivo compliance of arteries are expected to be closely related and estimated. Fluid-structure interaction analysis can assess the agreement between the two compliances. To evaluate this hypothesis, a pulsatile fluid-structure interaction analysis of blood flow in femoral artery of a dog was conducted using: (1) measured in vivo mean pressure (72.5 mmHg), mean pressure drop (0.59 mmHg), mean velocity (15.1 cm/sec); and (2) ex vivo measurements of non -- linear elastic properties of femoral artery. Additional analyses were conducted for physiological pressures (104.1 and 140.7 mmHg) and blood flow using a characteristic linear pressure --… More >

Displaying 711-720 on page 72 of 876. Per Page