Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,701)
  • Open Access

    ARTICLE

    GPR Image Enhancement and Object Detection-Based Identification for Roadbed Subsurface Defect

    Zhuangqiang Wen1, Min Zhang2, Zhekun Shou3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071300 - 08 January 2026

    Abstract Roadbed disease detection is essential for maintaining road functionality. Ground penetrating radar (GPR) enables non-destructive detection without drilling. However, current identification often relies on manual inspection, which requires extensive experience, suffers from low efficiency, and is highly subjective. As the results are presented as radar images, image processing methods can be applied for fast and objective identification. Deep learning-based approaches now offer a robust solution for automated roadbed disease detection. This study proposes an enhanced Faster Region-based Convolutional Neural Networks (R-CNN) framework integrating ResNet-50 as the backbone and two-dimensional discrete Fourier spectrum transformation (2D-DFT) for… More >

  • Open Access

    ARTICLE

    BIM-Based Visualization System for Settlement Warning in Multi-Purpose Utility Tunnels (MUTs)

    Ping Wu1, Jie Zou2, Wangxin Li1,*, Yidong Xu1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070873 - 08 January 2026

    Abstract The existing 2D settlement monitoring systems for utility tunnels are heavily reliant on manual interpretation of deformation data and empirical prediction models. Consequently, early anomalies (e.g., minor cracks) are often misjudged, and warnings lag by about 24 h without automated spatial localization. This study establishes a technical framework for requirements analysis, architectural design, and data-integration protocols. Revit parametric modelling is used to build a 3D tunnel model with structural elements, pipelines and 18 monitoring points (for displacement and joint width). Custom Revit API code integrated real-time sensor data into the BIM platform via an automated… More >

  • Open Access

    ARTICLE

    Adaptive Grid-Interface Control for Power Coordination in Multi-Microgrid Energy Networks

    Sk. A. Shezan*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.073418 - 27 December 2025

    Abstract Modern power systems increasingly depend on interconnected microgrids to enhance reliability and renewable energy utilization. However, the high penetration of intermittent renewable sources often causes frequency deviations, voltage fluctuations, and poor reactive power coordination, posing serious challenges to grid stability. Conventional Interconnection Flow Controllers (IFCs) primarily regulate active power flow and fail to effectively handle dynamic frequency variations or reactive power sharing in multi-microgrid networks. To overcome these limitations, this study proposes an enhanced Interconnection Flow Controller (e-IFC) that integrates frequency response balancing and an Interconnection Reactive Power Flow Controller (IRFC) within a unified adaptive… More >

  • Open Access

    ARTICLE

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

    Jin Lin1,*, Bin Yu2, Chao Chen1, Jiezhen Cai1, Yifan Wu2, Cunping Wang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069310 - 27 December 2025

    Abstract With the increasing integration of renewable energy, microgrids are increasingly facing stability challenges, primarily due to the lack of inherent inertia in inverter-dominated systems, which is traditionally provided by synchronous generators. To address this critical issue, Virtual Synchronous Generator (VSG) technology has emerged as a highly promising solution by emulating the inertia and damping characteristics of conventional synchronous generators. To enhance the operational efficiency of virtual synchronous generators (VSGs), this study employs small-signal modeling analysis, root locus methods, and synchronous generator power-angle characteristic analysis to comprehensively evaluate how virtual inertia and damping coefficients affect frequency… More > Graphic Abstract

    Virtual Synchronous Generator Control Strategy Based on Parameter Self-Tuning

  • Open Access

    ARTICLE

    Machine Learning Based Uncertain Free Vibration Analysis of Hybrid Composite Plates

    Bindi Saurabh Thakkar1, Pradeep Kumar Karsh2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-22, 2026, DOI:10.32604/cmc.2025.072839 - 09 December 2025

    Abstract This study investigates the uncertain dynamic characterization of hybrid composite plates by employing advanced machine-assisted finite element methodologies. Hybrid composites, widely used in aerospace, automotive, and structural applications, often face variability in material properties, geometric configurations, and manufacturing processes, leading to uncertainty in their dynamic response. To address this, three surrogate-based machine learning approaches like radial basis function (RBF), multivariate adaptive regression splines (MARS), and polynomial neural networks (PNN) are integrated with a finite element framework to efficiently capture the stochastic behavior of these plates. The research focuses on predicting the first three natural frequencies… More >

  • Open Access

    ARTICLE

    Energy Efficiency and Total Mission Completion Time Tradeoff in Multiple UAVs-Mounted IRS-Assisted Data Collection System

    Hong Zhao, Hongbin Chen*, Zhihui Guo, Ling Zhan, Shichao Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.072776 - 09 December 2025

    Abstract UAV-mounted intelligent reflecting surface (IRS) helps address the line-of-sight (LoS) blockage between sensor nodes (SNs) and the fusion center (FC) in Internet of Things (IoT). This paper considers an IoT assisted by multiple UAVs-mounted IRS (U-IRS), where the data from ground SNs are transmitted to the FC. In practice, energy efficiency (EE) and mission completion time are crucial metrics for evaluating system performance and operational costs. Recognizing their importance during data collection, we formulate a multi-objective optimization problem to maximize EE and minimize total mission completion time simultaneously. To characterize this tradeoff while considering optimization… More >

  • Open Access

    ARTICLE

    Multi-CNN Fusion Framework for Predictive Violence Detection in Animated Media

    Tahira Khalil1, Sadeeq Jan2,*, Rania M. Ghoniem3, Muhammad Imran Khan Khalil1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072655 - 09 December 2025

    Abstract The contemporary era is characterized by rapid technological advancements, particularly in the fields of communication and multimedia. Digital media has significantly influenced the daily lives of individuals of all ages. One of the emerging domains in digital media is the creation of cartoons and animated videos. The accessibility of the internet has led to a surge in the consumption of cartoons among young children, presenting challenges in monitoring and controlling the content they view. The prevalence of cartoon videos containing potentially violent scenes has raised concerns regarding their impact, especially on young and impressionable minds.… More >

  • Open Access

    ARTICLE

    MFF-YOLO: A Target Detection Algorithm for UAV Aerial Photography

    Dike Chen1,2,3, Zhiyong Qin2, Ji Zhang2, Hongyuan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.072494 - 09 December 2025

    Abstract To address the challenges of small target detection and significant scale variations in unmanned aerial vehicle (UAV) aerial imagery, which often lead to missed and false detections, we propose Multi-scale Feature Fusion YOLO (MFF-YOLO), an enhanced algorithm based on YOLOv8s. Our approach introduces a Multi-scale Feature Fusion Strategy (MFFS), comprising the Multiple Features C2f (MFC) module and the Scale Sequence Feature Fusion (SSFF) module, to improve feature integration across different network levels. This enables more effective capture of fine-grained details and sequential multi-scale features. Furthermore, we incorporate Inner-CIoU, an improved loss function that uses auxiliary More >

  • Open Access

    ARTICLE

    Overcoming Dynamic Connectivity in Internet of Vehicles: A DAG Lattice Blockchain with Reputation-Based Incentive

    Xiaodong Zhang1, Wenhan Hou2,*, Juanjuan Wang3, Leixiao Li1, Pengfei Yue1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.072384 - 09 December 2025

    Abstract Blockchain offers a promising solution to the security challenges faced by the Internet of Vehicles (IoV). However, due to the dynamic connectivity of IoV, blockchain based on a single-chain structure or Directed Acyclic Graph (DAG) structure often suffer from performance limitations. The DAG lattice structure is a novel blockchain model in which each node maintains its own account chain, and only the node itself is allowed to update it. This feature makes the DAG lattice structure particularly suitable for addressing the challenges in dynamically connected IoV environment. In this paper, we propose a blockchain architecture… More >

  • Open Access

    ARTICLE

    Dynamic Integration of Q-Learning and A-APF for Efficient Path Planning in Complex Underground Mining Environments

    Chang Su, Liangliang Zhao*, Dongbing Xiang

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-24, 2026, DOI:10.32604/cmc.2025.071319 - 09 December 2025

    Abstract To address low learning efficiency and inadequate path safety in spraying robot navigation within complex obstacle-rich environments—with dense, dynamic, unpredictable obstacles challenging conventional methods—this paper proposes a hybrid algorithm integrating Q-learning and improved A*-Artificial Potential Field (A-APF). Centered on the Q-learning framework, the algorithm leverages safety-oriented guidance generated by A-APF and employs a dynamic coordination mechanism that adaptively balances exploration and exploitation. The proposed system comprises four core modules: (1) an environment modeling module that constructs grid-based obstacle maps; (2) an A-APF module that combines heuristic search from A* algorithm with repulsive force strategies from… More >

Displaying 1-10 on page 1 of 2701. Per Page