Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,715)
  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Blades Based on Multi-Sensor Weighted Alignment Fusion in Noisy Environments

    Lifu He1, Zhongchu Huang1, Haidong Shao2,*, Zhangbo Hu1, Yuting Wang1, Jie Mei1, Xiaofei Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073227 - 12 January 2026

    Abstract Deep learning-based wind turbine blade fault diagnosis has been widely applied due to its advantages in end-to-end feature extraction. However, several challenges remain. First, signal noise collected during blade operation masks fault features, severely impairing the fault diagnosis performance of deep learning models. Second, current blade fault diagnosis often relies on single-sensor data, resulting in limited monitoring dimensions and ability to comprehensively capture complex fault states. To address these issues, a multi-sensor fusion-based wind turbine blade fault diagnosis method is proposed. Specifically, a CNN-Transformer Coupled Feature Learning Architecture is constructed to enhance the ability to More >

  • Open Access

    ARTICLE

    An Improved PID Controller Based on Artificial Neural Networks for Cathodic Protection of Steel in Chlorinated Media

    José Arturo Ramírez-Fernández1, Henevith G. Méndez-Figueroa1, Sebastián Ossandón2,*, Ricardo Galván-Martínez3, Miguel Ángel Hernández-Pérez3, Ricardo Orozco-Cruz3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072707 - 12 January 2026

    Abstract In this study, artificial neural networks (ANNs) were implemented to determine design parameters for an impressed current cathodic protection (ICCP) prototype. An ASTM A36 steel plate was tested in 3.5% NaCl solution, seawater, and NS4 using electrochemical impedance spectroscopy (EIS) to monitor the evolution of the substrate surface, which affects the current required to reach the protection potential (Eprot). Experimental data were collected as training datasets and analyzed using statistical methods, including box plots and correlation matrices. Subsequently, ANNs were applied to predict the current demand at different exposure times, enabling the estimation of electrochemical More >

  • Open Access

    ARTICLE

    Advanced Video Processing and Data Transmission Technology for Unmanned Ground Vehicles in the Internet of Battlefield Things (loBT)

    Tai Liu1,2, Mao Ye2,*, Feng Wu3, Chao Zhu2, Bo Chen2, Guoyan Zhang1,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072692 - 12 January 2026

    Abstract With the continuous advancement of unmanned technology in various application domains, the development and deployment of blind-spot-free panoramic video systems have gained increasing importance. Such systems are particularly critical in battlefield environments, where advanced panoramic video processing and wireless communication technologies are essential to enable remote control and autonomous operation of unmanned ground vehicles (UGVs). However, conventional video surveillance systems suffer from several limitations, including limited field of view, high processing latency, low reliability, excessive resource consumption, and significant transmission delays. These shortcomings impede the widespread adoption of UGVs in battlefield settings. To overcome these… More >

  • Open Access

    ARTICLE

    Mitigating Attribute Inference in Split Learning via Channel Pruning and Adversarial Training

    Afnan Alhindi*, Saad Al-Ahmadi, Mohamed Maher Ben Ismail

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072625 - 12 January 2026

    Abstract Split Learning (SL) has been promoted as a promising collaborative machine learning technique designed to address data privacy and resource efficiency. Specifically, neural networks are divided into client and server sub-networks in order to mitigate the exposure of sensitive data and reduce the overhead on client devices, thereby making SL particularly suitable for resource-constrained devices. Although SL prevents the direct transmission of raw data, it does not alleviate entirely the risk of privacy breaches. In fact, the data intermediately transmitted to the server sub-model may include patterns or information that could reveal sensitive data. Moreover,… More >

  • Open Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026

    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open Access

    ARTICLE

    A Firefly Algorithm-Optimized CNN–BiLSTM Model for Automated Detection of Bone Cancer and Marrow Cell Abnormalities

    Ishaani Priyadarshini*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072343 - 12 January 2026

    Abstract Early and accurate detection of bone cancer and marrow cell abnormalities is critical for timely intervention and improved patient outcomes. This paper proposes a novel hybrid deep learning framework that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) architecture, optimized using the Firefly Optimization algorithm (FO). The proposed CNN-BiLSTM-FO model is tailored for structured biomedical data, capturing both local patterns and sequential dependencies in diagnostic features, while the Firefly Algorithm fine-tunes key hyperparameters to maximize predictive performance. The approach is evaluated on two benchmark biomedical datasets: one comprising diagnostic data… More >

  • Open Access

    ARTICLE

    Privacy-Preserving Personnel Detection in Substations via Federated Learning with Dynamic Noise Adaptation

    Yuewei Tian1, Yang Su2, Yujia Wang1, Lisa Guo1, Xuyang Wu3,*, Lei Cao4, Fang Ren3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072081 - 12 January 2026

    Abstract This study addresses the risk of privacy leakage during the transmission and sharing of multimodal data in smart grid substations by proposing a three-tier privacy-preserving architecture based on asynchronous federated learning. The framework integrates blockchain technology, the InterPlanetary File System (IPFS) for distributed storage, and a dynamic differential privacy mechanism to achieve collaborative security across the storage, service, and federated coordination layers. It accommodates both multimodal data classification and object detection tasks, enabling the identification and localization of key targets and abnormal behaviors in substation scenarios while ensuring privacy protection. This effectively mitigates the single-point… More >

  • Open Access

    ARTICLE

    Research on the Classification of Digital Cultural Texts Based on ASSC-TextRCNN Algorithm

    Zixuan Guo1, Houbin Wang2, Sameer Kumar1,*, Yuanfang Chen3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072064 - 12 January 2026

    Abstract With the rapid development of digital culture, a large number of cultural texts are presented in the form of digital and network. These texts have significant characteristics such as sparsity, real-time and non-standard expression, which bring serious challenges to traditional classification methods. In order to cope with the above problems, this paper proposes a new ASSC (ALBERT, SVD, Self-Attention and Cross-Entropy)-TextRCNN digital cultural text classification model. Based on the framework of TextRCNN, the Albert pre-training language model is introduced to improve the depth and accuracy of semantic embedding. Combined with the dual attention mechanism, the… More >

  • Open Access

    ARTICLE

    BearFusionNet: A Multi-Stream Attention-Based Deep Learning Framework with Explainable AI for Accurate Detection of Bearing Casting Defects

    Md. Ehsanul Haque1, Md. Nurul Absur2, Fahmid Al Farid3, Md Kamrul Siam4, Jia Uddin5,*, Hezerul Abdul Karim3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071771 - 12 January 2026

    Abstract Manual inspection of onba earing casting defects is not realistic and unreliable, particularly in the case of some micro-level anomalies which lead to major defects on a large scale. To address these challenges, we propose BearFusionNet, an attention-based deep learning architecture with multi-stream, which merges both DenseNet201 and MobileNetV2 for feature extraction with a classification head inspired by VGG19. This hybrid design, figuratively beaming from one layer to another, extracts the enormity of representations on different scales, backed by a pre-preprocessing pipeline that brings defect saliency to the fore through contrast adjustment, denoising, and edge… More >

  • Open Access

    ARTICLE

    Action Recognition via Shallow CNNs on Intelligently Selected Motion Data

    Jalees Ur Rahman1, Muhammad Hanif1, Usman Haider2,*, Saeed Mian Qaisar3,*, Sarra Ayouni4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071251 - 12 January 2026

    Abstract Deep neural networks have achieved excellent classification results on several computer vision benchmarks. This has led to the popularity of machine learning as a service, where trained algorithms are hosted on the cloud and inference can be obtained on real-world data. In most applications, it is important to compress the vision data due to the enormous bandwidth and memory requirements. Video codecs exploit spatial and temporal correlations to achieve high compression ratios, but they are computationally expensive. This work computes the motion fields between consecutive frames to facilitate the efficient classification of videos. However, contrary… More >

Displaying 1-10 on page 1 of 2715. Per Page