Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (97)
  • Open Access

    ARTICLE

    Influence of Temperature and High Electric Field on Power Consumption by Piezoelectric Actuated Integrated Structure

    Deepak A Apte1, Ranjan Ganguli1,2

    CMC-Computers, Materials & Continua, Vol.10, No.2, pp. 139-162, 2009, DOI:10.3970/cmc.2009.010.139

    Abstract The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000με). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d31, dielectric coefficient ε33 and dissipation factor δ. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the More >

  • Open Access

    ARTICLE

    Electroelastic Problem of Two Anti-Plane Collinear Cracks at the Interface of Two Bonded Dissimilar Piezoelectric Layers

    B. M. Singh, J. Rokne, R. S. Dhaliwal1

    Structural Durability & Health Monitoring, Vol.4, No.2, pp. 95-106, 2008, DOI:10.3970/sdhm.2008.004.095

    Abstract Under the permeable electric boundary condition the problem of two collinear anti-plane shear cracks situated at the interface of two bonded dissimilar piezoelectric layers is considered. It is assumed that applied longitudinal shear stress and electric loading at the layer surfaces are prescribed. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with a cosine kernel. The triple integral equations are further reduced to a Fredholm integral equation of the second kind whose iterative solution has been obtained. Analytical expressions for the stress intensity factors are More >

  • Open Access

    ABSTRACT

    Piezoelectric Bimorph Response with Imperfect Bonding Conditions

    Milazzo A.1, aimo A.1, Benedetti I.1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.6, No.3, pp. 151-156, 2008, DOI:10.3970/icces.2008.006.151

    Abstract The effect of the finite stiffness bonding between the piezoelectric plies of bimorph devices has been investigated. A boundary integral formulation for piezoelasticity, based on a multidomain technique with imperfect interface conditions, has been developed. The imperfect interface conditions between the piezoelectric layers are described in terms of linear relations between the interface tractions, in normal and tangential directions, and the respective discontinuity in displacements. Continuity of the electric potential at the interface is also assumed and an iterative procedure is implemented to avoid interface interference. Numerical analysis has been performed on bimorph configurations with More >

  • Open Access

    ARTICLE

    A Node-Based Element for Analysis of Planar Piezoelectric Structures

    H. Nguyen-Van1, N.Mai-Duy1, T. Tran-Cong1

    CMES-Computer Modeling in Engineering & Sciences, Vol.36, No.1, pp. 65-96, 2008, DOI:10.3970/cmes.2008.036.065

    Abstract A novel node-based smoothing element for triangular and quadrilateral meshes is presented for static analysis of planar piezoelectric structures. In contrast to the smoothed finite element formulation that was based on sub-cells within an original quadrilateral element, this new method transforms a general original finite element mesh into a mesh of new smoothing cells individually associated with a single node which is termed as node-based elements. The displacement fields of the element are approximated by the linear interpolation functions of the original mesh while the approximations of mechanical strains and electric potential fields are normalized More >

  • Open Access

    ARTICLE

    Modeling of Intelligent Material Systems by the MLPG

    J. Sladek1, V. Sladek2, P. Solek1, S.N. Atluri3

    CMES-Computer Modeling in Engineering & Sciences, Vol.34, No.3, pp. 273-300, 2008, DOI:10.3970/cmes.2008.034.273

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed, to solve boundary and initial value problems of piezoelectric and magneto-electric-elastic solids with continuously varying material properties. Stationary and transient dynamic 2-D problems are considered in this paper. The mechanical fields are described by the equations of motion with an inertial term. To eliminate the time-dependence in the governing partial differential equations the Laplace-transform technique is applied to the governing equations, which are satisfied in the Laplace-transformed domain in a weak-form on small subdomains. Nodal points are spread on the analyzed domain, and each More >

  • Open Access

    ARTICLE

    A Differential Reproducing Kernel Particle Method for the Analysis of Multilayered Elastic and Piezoelectric Plates

    Chih-Ping Wu1, Kuan-Hao Chiu, Yun-Ming Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.3, pp. 163-186, 2008, DOI:10.3970/cmes.2008.027.163

    Abstract A differential reproducing kernel particle (DRKP) method is proposed and developed for the analysis of simply supported, multilayered elastic and piezoelectric plates by following up the consistent concepts of reproducing kernel particle (RKP) method. Unlike the RKP method in which the shape functions for derivatives of the reproducing kernel (RK) approximants are obtained by directly taking the differentiation with respect to the shape functions of the RK approximants, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. On the basis of the extended Hellinger-Reissner principle, More >

  • Open Access

    ARTICLE

    A Smoothed Four-Node Piezoelectric Element for Analysis of Two-Dimensional Smart Structures

    H. Nguyen-Van1, N. Mai-Duy2, T. Tran-Cong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.23, No.3, pp. 209-222, 2008, DOI:10.3970/cmes.2008.023.209

    Abstract This paper reports a study of linear elastic analysis of two-dimensional piezoelectric structures using a smoothed four-node piezoelectric element. The element is built by incorporating the strain smoothing method of mesh-free conforming nodal integration into the standard four-node quadrilateral piezoelectric finite element. The approximations of mechanical strains and electric potential fields are normalized using a constant smoothing function. This allows the field gradients to be directly computed from shape functions. No mapping or coordinate transformation is necessary so that the element can be used in arbitrary shapes. Through several examples, the simplicity, efficiency and reliability More >

  • Open Access

    REVIEW

    A Review on the Three-Dimensional Analytical Approaches of Multilayered and Functionally Graded Piezoelectric Plates and Shells

    Chih-Ping Wu1,2, Kuan-Hao Chiu2, Yung-Ming Wang2

    CMC-Computers, Materials & Continua, Vol.8, No.2, pp. 93-132, 2008, DOI:10.3970/cmc.2008.008.093

    Abstract The article is to present an overview of various three-dimensional (3D) analytical approaches for the analysis of multilayered and functionally graded (FG) piezoelectric plates and shells. The reported 3D approaches in the literature are classified as four different approaches, namely, Pagano's classical approach, the state space approach, the series expansion approach and the asymptotic approach. Both the mixed formulation and displacement-based formulation for the 3D analysis of multilayered piezoelectric plates are derived. The analytical process, based on the 3D formulations, for the aforementioned approaches is briefly interpreted. The present formulations of multilayered piezoelectric plates can… More >

  • Open Access

    ARTICLE

    Application of the MLPG to Thermo-Piezoelectricity

    J. Sladek1, V. Sladek1, Ch. Zhang2, P. Solek3

    CMES-Computer Modeling in Engineering & Sciences, Vol.22, No.3, pp. 217-234, 2007, DOI:10.3970/cmes.2007.022.217

    Abstract A meshless method based on the local Petrov-Galerkin approach is proposed for the solution of boundary value problems for coupled thermo-electro-mechanical fields. Transient dynamic governing equations are considered here. To eliminate the time-dependence in these equations, the Laplace-transform technique is applied. Material properties of piezoelectric materials are influenced by a thermal field. It is leading to an induced nonhomogeneity and the governing equations are more complicated than in a homogeneous counterpart. Two-dimensional analyzed domain is subdivided into small circular subdomains surrounding nodes randomly spread over the whole domain. A unit step function is used as More >

  • Open Access

    ARTICLE

    Two Dimensional Dynamic Green's Functions for Piezoelectric Materials

    Kuang-Chong Wu1, Shyh-Haur Chen2

    CMES-Computer Modeling in Engineering & Sciences, Vol.20, No.3, pp. 147-156, 2007, DOI:10.3970/cmes.2007.020.147

    Abstract A formulation for two-dimensional self-similar anisotropic elastodyamics problems is generalized to piezoelectric materials. In the formulation the general solution of the displacements is expressed in terms of the eigenvalues and eigenvectors of a related eight-dimensional eigenvalue problem. The present formulation can be used to derive analytic solutions directly without the need of performing integral transforms as required in Cagniard-de Hoop method. The method is applied to derive explicit dynamic Green's functions. Some analytic results for hexagonal 6mm materials are also derived. Numerical examples for the quartz are illustrated. More >

Displaying 71-80 on page 8 of 97. Per Page