Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (53)
  • Open Access

    ARTICLE

    Comparison of Apigenin, Quercetin and Kaempferol Accumulation and Total Flavonoid Content in Leaves, Embryogenic Cultures and Cell Suspension Cultures of Parsley (Petroselinum crispum)

    Laura Isabel Arias-Rodríguez1, Martha Alicia Rodríguez-Mendiola2,*, Carlos Arias-Castro2,*, Federico Antonio Gutiérrez Miceli1, Diana Reséndez Pérez3, María Celina Luján Hidalgo1, Juan José Villalobos Maldonado1, Norma Alejandra Mancilla Margalli2

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2807-2823, 2023, DOI:10.32604/phyton.2023.030396

    Abstract In recent years, there has been a growing interest in exploring alternative treatments for bone defects. Bone tissue engineering has turned its attention to plant extracts containing osteogenic flavonoids as potential promoters of bone regeneration. In our study, we specifically investigated the extract of Petroselinum crispum, a plant known for its abundance of osteogenic flavonoids such as apigenin, quercetin, and kaempferol. Our objective was to compare the total flavonoid content (TFC) and their accumulation in different sources. We obtained hydrolyzed aqueous extracts from the leaves of parsley plants (grown for 12 weeks in the field), weekly embryogenic cultures, and suspension… More >

  • Open Access

    REVIEW

    Adventitious Root Regeneration: Molecular Basis and Influencing Factors

    Lulu Zhi, Xiangyang Hu*

    Phyton-International Journal of Experimental Botany, Vol.92, No.10, pp. 2825-2840, 2023, DOI:10.32604/phyton.2023.030912

    Abstract Plant regeneration is a self-repair of the plant body in response to adverse conditions or damaged structures, and root regeneration allows the plant body to better adapt to its environment by supplementing the roots’ structure. Previous research has shown that adventitious roots can be made to occur from scratch in two ways. Studies that simulate adventitious root regeneration through natural conditions allow the regeneration process to be broadly divided into three stages: the perception of early signals, the massive accumulation of auxin, and the transformation of cell fate. The strength of regeneration, in turn, is influenced by wounding, stress, hormones,… More >

  • Open Access

    ARTICLE

    Evaluation of Beta-Lactam Antibiotics on the Regeneration of Peanut Plants and Their Inhibitory Effect on Agrobacterium Growth

    Abraham Lamboro1,3,*, Songnan Yang1, Xueying Li1, Dan Yao2, Jun Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.9, pp. 2489-2501, 2023, DOI:10.32604/phyton.2023.029492

    Abstract The effect of beta-lactam antibiotics on shoot induction and plantlet regeneration from cotyledonary nodes was tested using two peanut cultivars. The culture media contained 4 mg/L 6-benzylaminopurine (BAP) as the main growth regulator. Various concentrations (100–600 mg/L) of cefotaxime, carbenicillin, and timentin were applied in the culture media. In all the tested media, there were no significant differences in the shoot induction as compared to the control. However, little phytotoxic effect was observed at higher concentrations of these antibiotics in the shoot elongation media. Under shoot elongation medium, shoots turned brownish and partly died at higher concentrations where shooting rates… More >

  • Open Access

    ARTICLE

    Soil Moisture Rather than Soil Nutrient Regulates the Belowground Bud Bank of Rhizomatous Species Psammochloa villosa in Arid Sand Dunes

    Yawei Dong1, Ziyue Guo1, Qun Ma2, Zhiming Xin3, Jin Tao1, Jiatai Tian1, Jinlei Zhu3, Zhiming Zhang1,*, Jianqiang Qian1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.5, pp. 1301-1309, 2023, DOI:10.32604/phyton.2023.027043

    Abstract In arid and semi-arid sand dune ecosystems, belowground bud bank plays an important role in population regeneration and vegetation restoration. However, the responses of belowground bud bank size and composition to sand burial and its induced changes in soil environmental factors have been rarely studied. In arid sand dunes of Northwestern China, we investigated belowground bud bank size and composition of the typical rhizomatous psammophyte Psammochloa villosa as well as three key soil environmental factors (soil moisture, total carbon and total nitrogen) under different depths of sand burial. Total buds and rhizome buds increased significantly with increasing burial depth, whereas… More >

  • Open Access

    REVIEW

    Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration

    AAYUSHI RANDHAWA1,2, SAYAN DEB DUTTA1, KEYA GANGULY1, TEJAL V. PATIL1,2, RACHMI LUTHFIKASARI1, KI-TAEK LIM1,2,*

    BIOCELL, Vol.47, No.4, pp. 789-808, 2023, DOI:10.32604/biocell.2023.026217

    Abstract Tissues are made up of cells and the extracellular matrix (ECM) which surrounds them. These cells and tissues are actively adaptable to enduring significant stress that occurs in daily life. This astonishing mechanical stress develops due to the interaction between the live cells and the non-living ECM. Cells in the matrix microenvironment can sense the signals and forces produced and initiate a signaling cascade that plays a crucial role in the body’s normal functioning and influences various properties of the native cells, including growth, proliferation, and differentiation. However, the matrix’s characteristic features also impact the repair and regeneration of the… More >

  • Open Access

    ARTICLE

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

    Mengqi Cong*, Yang Zhang, Yunlong Zhang, Xiao Liu, Yalin Lu, Xiaoping Li

    Journal of Renewable Materials, Vol.11, No.4, pp. 1977-1989, 2023, DOI:10.32604/jrm.2023.023849

    Abstract Magnesium alloy has been considered as one of the third-generation biomaterials for the regeneration and support of functional bone tissue. As a regeneration implant material with great potential applications, in-situ Mg2Si phase reinforced Mg-6Zn cast alloy was comprehensively studied and expected to possess excellent mechanical properties via the refining and modifying of Mg2Si reinforcements. The present study demonstrates that the primary and eutectic Mg2Si phase can be greatly modified by the yttrium (Y) addition. The size of the primary Mg2Si phases can be reduced to ~20 μm with an addition of 0.5 wt.% Y. This phenomenon is mainly attributed to… More > Graphic Abstract

    Tensile Properties and Wear Resistance of Mg Alloy Containing High Si as Implant Materials

  • Open Access

    REVIEW

    Dental pulp stem cells and banking of teeth as a lifesaving therapeutic vista

    SUKUMARAN ANIL1,2,*, RAMYA RAMADOSS3, NEBU G. THOMAS4, JASMIN M. GEORGE4, VISHNUPRIYA K. SWEETY4

    BIOCELL, Vol.47, No.1, pp. 71-80, 2023, DOI:10.32604/biocell.2023.024334

    Abstract Exfoliated deciduous or an extracted healthy adult tooth can be used to harvest, process, and cryogenically preserve dental pulp stem cells. Future stem cell-based regenerative medicine methods could benefit significantly from these mesenchymal stem cells. Teeth serve as a substantial source of mesenchymal stem cells, otherwise disposed of as medical waste. Care should be taken to store this treasure trove of stem cells. Collective responsibility of patients, dentists, and physicians is necessary to ensure that this valuable resource is not wasted and that every possible dental pulp stem cell is available for use in the future. The dental pulp stem… More >

  • Open Access

    ARTICLE

    Combination of 6-Benzylaminopurine and Thidiazuron Promotes Highly Efficient Shoot Regeneration from Cotyledonary Node of Mature Peanut (Arachis hypogaea L.) Cultivars

    Abraham Lamboro1,*, Xiao Han1, Songnan Yang1, Xueying Li1, Dan Yao2, Baixing Song1, Jun Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.12, pp. 2619-2631, 2022, DOI:10.32604/phyton.2022.021404

    Abstract Efficient in vitro plantlet regeneration is an important step to successfully transform genes for the improvement of agronomic traits. A combination of 6-benzylaminopurine (BAP) and thidiazuron (TDZ) plant growth regulators was applied to evaluate shoot regeneration capacity whereas α-naphthalene acetic acid (NAA) combination with 6-benzylaminopurine (BAP), and 2, 4-dichlorophenoxyacetic acid (2, 4-D) with 6-benzylaminopurine were tested to optimize root induction for two peanut cultivars. The result showed combination (BAP with TDZ) was found to be effective in promoting shoot. The highest shoot regeneration frequency (93%) was obtained on a medium supplemented with 4 mg/L BAP and 0.5 mg/L TDZ while an average… More >

  • Open Access

    ARTICLE

    Soot Distribution and Thermal Regeneration of Marine Diesel Particulate Filter

    Xiangli Wang1, Peiyong Ni2,*

    Energy Engineering, Vol.119, No.4, pp. 1697-1710, 2022, DOI:10.32604/ee.2022.021070

    Abstract Diesel particulate filter (DPF) is a leading technology reducing particle emissions from marine diesel engines. The removal or regeneration of soot in DPF is an important issue. The purpose of this study is to provide some reference strategies to design the DPF for marine diesel engines. In this paper, a mathematical model of a marine DPF was built up and the particle trap process and the regeneration dynamics were simulated. The results show that the cake soot mass concentrations from 0 to 4.2 g/L during the trap process increase linearly with the increase of the exhaust gas flows while the… More >

  • Open Access

    ARTICLE

    Injectable Collagen/CMC Soft Tissue Filler with Developed Flow Properties

    Reza Samanipour1, Aida Pourmostafa2, Adel Marzban2, Sara Tabatabaee3, Hasan Bahraminasab2, Amir Ali Hamidieh4, Amirhossein Tavakoli4,*

    Molecular & Cellular Biomechanics, Vol.19, No.2, pp. 97-104, 2022, DOI:10.32604/mcb.2022.019080

    Abstract Based on the remarkable demand for facial reconstitute or reshape fillers due to the dermal defects arising from specific diseases, trauma, or aging, several natural or synthetic materials have been investigated. Among the evaluated materials, decellularized dermis is one of the most biocompatible choices for the aim of skin tissue regenerative approaches. On the other hand, Carboxymethyl Cellulose (CMC), a synthetic polysaccharide, with the desirable degradability, biomechanical stability, and nontoxicity seems to be an acceptable reinforcement agent for decellularized dermis. Thus, in this research, an injectable soft tissue filler contained of human-derived decellularized collagen and CMC was fabricated. The cell-removal… More >

Displaying 1-10 on page 1 of 53. Per Page