Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (59)
  • Open Access


    Mesenchymal stem cells-derived extracellular vesicles as ‘natural’ drug delivery system for tissue regeneration


    BIOCELL, Vol.46, No.4, pp. 899-902, 2022, DOI:10.32604/biocell.2022.018594

    Abstract Mesenchymal stem cells (MSCs) have abilities to mediate tissue protection through mechanisms of anti-apoptosis, anti-oxidative stress and anti-fibrosis as well as tissue regeneration through mechanisms of cell proliferation, differentiation and angiogenesis. These effects by MSCs are mediated by a variety of factors, including growth factors, cytokines and extracellular vesicles (EVs). Among these factors, EVs, containing proteins, mRNA and microRNAs (miRNA), may carry their contents into distant tissues with high stability. Therefore, the treatment with MSC-derived EVs may be promising as ‘natural’ drug delivery systems (DDS). Especially, the treatment of MSC-derived EVs with the manipulation of More >

  • Open Access


    Stem cells in intervertebral disc regeneration–more talk than action?


    BIOCELL, Vol.46, No.4, pp. 893-898, 2022, DOI:10.32604/biocell.2022.018432

    Abstract Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of More >

  • Open Access


    Genotype Screening of Recipient Resources with High Regeneration and Transformation Efficiency in Chrysanthemum

    Yajun Li1,#, Yumeng Cui1,#, Bingjie Wang1, Yue Li1, Mengmeng Zhang2, Silan Dai1, He Huang1,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.4, pp. 869-888, 2022, DOI:10.32604/phyton.2022.018659

    Abstract Genetic transformation is one of the key steps in the molecular breeding of chrysanthemum, which relies on an optimal regeneration and transformation system. However, the regeneration system of different chrysanthemum cultivars varies, and the regeneration time of most cultivars is long. To screen cultivars with highly efficient regeneration, leaves and shoot tip thin cell layers (tTCL) from eight chrysanthemum cultivars with different flower colors and flower types were cultured on Murashige and Skoog media (MS) supplemented with 1.0–5.0 mg L−1 6-benzylaminopurine (6-BA) and 0.1–1.0 mg L−1 α-naphthaleneacetic (NAA). The results showed that the most efficient regeneration… More >

  • Open Access


    Optimization of Agrobacterium tumefaciens-Mediated Genetic Transformation of Maize

    Mengtong Liu1, Yangyang Zhou1, Tongyu Liu1, Jianyu Lu1, Jing Qu2, Shuyan Guan2,*, Yiyong Ma2,*

    Phyton-International Journal of Experimental Botany, Vol.91, No.2, pp. 363-374, 2022, DOI:10.32604/phyton.2022.016325

    Abstract Immature embryos of inbred maize (Zea mays) lines (H8183, H8184, and H8185) were used for Agrobacterium infection. We used the β-glucuronidase gene (GUS) as the target gene and the glufosinate resistance gene (bar) as the selection marker. We conducted research on several aspects, such as different genotypes, coculture conditions, screening agent concentrations, and concentrations of indole-3-butytric acid (IBA), 6-benzylaminopurine (6-BA), and ascorbic acid (Vc) in the differentiation medium. We optimized the genetic transformation system, and the obtained results indicated that among the three lines studied, the induction rate of H8185 was the highest at 93.2%, followed by H8184, More >

  • Open Access


    Exergy Analysis and Thermal Optimization of a Double-Turbine Regeneration System in a Ultra-Supercritical Double-Reheat Unit

    Shidan Chi1, Tao Luan1,*, Yan Liang2, Xundong Hu2, Yan Gao3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 71-80, 2021, DOI:10.32604/fdmp.2021.013178

    Abstract Improving the primary steam parameters is one of the most direct ways to improve the cycle efficiency of a power generation system. In the present study, the typical problem connected to the excessively high superheat degree of extraction steam in an ultra-supercritical (USC) double-reheat unit is considered. Using a 1000 MW power plant as an example, two systems (case 1 and case 2) are proposed, both working in combination with a regenerative steam turbine. The thermal performances of these two systems are compared with that of the original system through a heat balance method and More >

  • Open Access


    An Efficient Plant Regeneration System of Hydrangea bretschneideri Dipp via Stem Segments as Explants

    Si ran Wang#, Jia Yan#, Bu er Ha, Yu’e Bai*

    Phyton-International Journal of Experimental Botany, Vol.90, No.2, pp. 595-604, 2021, DOI:10.32604/phyton.2021.013693

    Abstract Hydrangea bretschneideri Dipp is a highly popular ornamental plant for garden decoration. Genetic engineering technology has been successfully used in many plant species, but it is limited in Hydrangea. Here we established an efficient regeneration system by using stem segments as explants for the first time. In our study, the plant growth regulators (PGRs) were evaluated at the different regeneration processes, including axillary shoots regeneration and root induction. We found that the optimal concentration for axillary buds’ induction was 2.0 mgL−1 6-BA and 0.5 mgL−1 1 IAA, its highest induction rate was 70%. Moreover, the highest axillary shoots More >

  • Open Access


    Efficient Evergreen Plant Regeneration of Cinnamomum japonicum Sieb. through in vitro Organogenesis

    Jiaji Zhang1, Xiaofei Long1, Yuhao Weng1, Tielong Cheng2, Jisen Shi1, Jinhui Chen1,*

    Phyton-International Journal of Experimental Botany, Vol.90, No.2, pp. 571-582, 2021, DOI:10.32604/phyton.2021.014191

    Abstract Cinnamomum japonicum Sieb. is an excellent roadside tree and medicinal tree species with considerable ornamental and economic value. In this study, we successfully developed a large-scale micropropagation protocol for C. japonicum for the first time. Sterilized shoots were excised and used as explants for shoot induction on several basal media, supplemented with different concentrations of plant growth regulators (PGRs), such as Thidiazuron (TDZ), N6 -Benzyladenine (6-benzylaminopurine) (BA), α-naphthaleneacetic acid (NAA) and Gibberellic acid (GA3). After comparison, the most efficient medium for shoot regeneration was 1/2 Murashige and Skoog (MS) medium containing 0.5 mg L–1 BA, 0.05 mg L–1 NAA and… More >

  • Open Access


    Enhanced osteogenic differentiation of human periodontal ligament stem cells by suberoylanilide hydroxamic acid


    BIOCELL, Vol.44, No.3, pp. 389-400, 2020, DOI:10.32604/biocell.2020.09170

    Abstract Periodontitis is a type of chronic inflammation in the gingival tissue caused by infectious bacteria colonizing the surface of the teeth, leading to the destruction of tooth-supporting tissues and loss of alveolar bone. Suberoylanilide hydroxamic acid (SAHA), a class of histone deacetylase (HDAC) inhibitor, has the potential to stimulate osteoblast differentiation by acetylating histone proteins, and thus suppressing the expression of adipogenic and chondrogenic genes. However, the effect of SAHA on the differentiation of human periodontal ligament stem cells (hPDLSCs) is yet to be elucidated. Herein, we investigated the effects of SAHA on in vitro More >

  • Open Access


    Optimization of Callus Induction Conditions from Immature Embryos in Maize and Plant Regeneration

    Peng Jiao1,#, Ruiqi Ma2,#, Zhuo Qi1, Zhenzhong Jiang1, Siyan Liu1, Jing Qu3, Shuyan Guan1,*, Yiyong Ma3,*

    Phyton-International Journal of Experimental Botany, Vol.89, No.1, pp. 121-130, 2020, DOI:10.32604/phyton.2020.07980

    Abstract This research uses the immature embryos of inbred maize lines (GSH9901, Hi01, Hi02, and Chang 7-2) as receptor materials to establish the callus induction system. These inbred lines provide the receptor materials for the genetic regeneration of maize and the verification of the genetic functions of maize. The factor experiment and orthogonal experiments were used to investigate the impacts of different genotypes, immature embryo size, shield orientation, 2, 4-D concentration, proline concentration, and folic acid concentration on the induction rate of embryogenic callus tissue. A sensitivity experiment testing glyphosate (Bar) and an antibiotic (Cefotaxime sodium)… More >

  • Open Access


    Rapid Microwave-Assisted Ionothermal Dissolution of Cellulose and Its Regeneration Properties

    Xu Wang1,3, Jianhong Zhou1,2, Bo Pang1,2, Dawei Zhao1,2,*

    Journal of Renewable Materials, Vol.7, No.12, pp. 1363-1380, 2019, DOI:10.32604/jrm.2019.08218

    Abstract Introduction of the strategy of anhydrous calcium carbonate protection incorporated with the drop by drop reaction, high-purity 1-butyl-3-methylimidazolium chloride ([Bmim] Cl) was prepared at reaction temperature of 80°C for only 10 h. Cellulose samples from different biomass sources (with different degree of polymerization characteristic) could be rapidly (no more than 10 minutes) and completely dissolved in the [Bmim] Cl using a microwave-assisted ionothermal route. Homogeneous cellulosic regenerates with high degree of polymerization and thermal stability characteristics were obtained through a coagulation process in water. Furthermore, the dissolved celluloses were readily regenerated into solid products such More >

Displaying 21-30 on page 3 of 59. Per Page