Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (264)
  • Open Access

    REVIEW

    Research advancements in nanoparticles and cell-based drug delivery systems for the targeted killing of cancer cells

    MERYEM A. ABDESSALEM, SIRIN A. ADHAM*

    Oncology Research, Vol.33, No.1, pp. 27-44, 2025, DOI:10.32604/or.2024.056955 - 20 December 2024

    Abstract Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously. Despite these benefits, challenges remain in patient-specific responses and regulatory approvals for cell-based or nanoparticle therapies. Cell-based drug delivery systems (DDSs) that primarily utilize the immune-recognition principle between… More > Graphic Abstract

    Research advancements in nanoparticles and cell-based drug delivery systems for the targeted killing of cancer cells

  • Open Access

    ARTICLE

    CAF-derived exosome-miR-3124-5p promotes malignant biological processes in NSCLC via the TOLLIP/TLR4-MyD88-NF-κB pathway

    TAO SUN1,2, QINGHUA SONG3, HUA LIU1,*

    Oncology Research, Vol.33, No.1, pp. 133-148, 2025, DOI:10.32604/or.2024.054141 - 20 December 2024

    Abstract Background: Lung cancer is a life-threatening disease that occurs worldwide, but is especially common in China. The crucial role of the tumour microenvironment (TME) in non-small cell lung cancer (NSCLC) has attracted recent attention. Cancer-associated fibroblasts (CAFs) are the main factors that contribute to the TME function, and CAF exosomes are closely linked to NSCLC. Methods: The expression levels of miR-3124-5p and Toll-interacting protein (TOLLIP) were analysed by bioinformatics prediction combined with RT-qPCR/Western Blot detection. Fibroblasts were isolated and identified from clinical NSCLC tissues. Transmission electron microscopy and Western Blot were used to identify exosomes… More >

  • Open Access

    ARTICLE

    TLERAD: Transfer Learning for Enhanced Ransomware Attack Detection

    Isha Sood*, Varsha Sharma

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2791-2818, 2024, DOI:10.32604/cmc.2024.055463 - 18 November 2024

    Abstract Ransomware has emerged as a critical cybersecurity threat, characterized by its ability to encrypt user data or lock devices, demanding ransom for their release. Traditional ransomware detection methods face limitations due to their assumption of similar data distributions between training and testing phases, rendering them less effective against evolving ransomware families. This paper introduces TLERAD (Transfer Learning for Enhanced Ransomware Attack Detection), a novel approach that leverages unsupervised transfer learning and co-clustering techniques to bridge the gap between source and target domains, enabling robust detection of both known and unknown ransomware variants. The proposed method More >

  • Open Access

    PROCEEDINGS

    Research on the Synergistic Mechanism of Photothermal-Chemotherapy-Immunotherapy of Multi-Functional Nanoparticles Against Gastric Cancer

    Erdong Shen1, Ting Pan1, Pan Guo1, Ke Chen1, Rui Xu1, Mei Yang1, Dahe Zhan1, Fang Fang1, Qinghui Wu1,*, Jianbing Hu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-3, 2024, DOI:10.32604/icces.2024.012772

    Abstract Objective
    This study investigates the synergistic effects of a novel multifunctional nanoparticle on gastric cancer treatment through photothermal therapy, chemotherapy, and immunotherapy.

    Method
    Synthesize hollow mesoporous Prussian blue nanoparticles and load them with luteolin. Use exosomes to encapsulate the nanoparticles and modify the surface of the targeted peptide GX1. Detect the morphology of nanoparticles using a nanoparticle size analyzer and transmission electron microscopy. Use Coomassie Brilliant Blue to detect the effect of extracellular vesicle encapsulation. Detect the thermal conversion efficiency of nanoparticles under specific laser irradiation through infrared and ultraviolet spectroscopy, as well as the release rate… More >

  • Open Access

    ARTICLE

    Effects of Forest Types on Soil Available Nutrients and Carbon Contents in Coastal Areas, China

    Zirui Chen1,2, Jiale Liu1,2, Haijun Sun1,2,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.10, pp. 2557-2569, 2024, DOI:10.32604/phyton.2024.056868 - 30 October 2024

    Abstract Clarifying the soil nutrient dynamics caused by forest type variations in the coastal region helps scientifically to apply fertilizer to forest plantations and enhance the carbon (C) sink capacity. Pure forests of Ligustrum and Metasequoia, as well as their mixed forests, in a coastal region of China were investigated by collecting 0–20 and 20–40 cm soil samples and analyzing their differences in bulk density, water content, pH, soil organic matter (SOM), ammonium (NH4+–N), nitrate (NO3–N) and total nitrogen (TN), available phosphorus (AP) and potassium (AK), microbial biomass C (MBC) and N (MBN), and enzyme activity. The results… More >

  • Open Access

    ARTICLE

    MiR-150-5p inhibits cell proliferation and metastasis by targeting FTO in osteosarcoma

    LICHEN XU1,2, PAN ZHANG3,*, GUIQI ZHANG2, ZHAOLIANG SHEN4, XIZHUANG BAI1,3,*

    Oncology Research, Vol.32, No.11, pp. 1777-1789, 2024, DOI:10.32604/or.2024.047704 - 16 October 2024

    Abstract Background: Osteosarcoma (OS), recognized as the predominant malignant tumor originating from bones, necessitates an in-depth comprehension of its intrinsic mechanisms to pinpoint novel therapeutic targets and enhance treatment methodologies. The role of fat mass and obesity-associated (FTO) in OS, particularly its correlation with malignant traits, and the fundamental mechanism, remains to be elucidated. Materials and Methods: 1. The FTO expression and survival rate in tumors were analyzed. 2. FTO in OS cell lines was quantified utilizing western blot and PCR. 3. FTO was upregulated and downregulated separately in MG63. 4. The impact of FTO on the… More >

  • Open Access

    ARTICLE

    Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer

    YONGJIAN HUANG, JINZHOU WANG, JIUHUA XU, NING RUAN*

    Oncology Research, Vol.32, No.11, pp. 1765-1776, 2024, DOI:10.32604/or.2024.045564 - 16 October 2024

    Abstract Background: Despite significant advancements in the development of anticancer therapies over the past few decades, the clinical management of colorectal cancer remains a challenging task. This study aims to investigate the inhibitory effects of cancer-targeting liposomes against colorectal cancer. Materials and Methods: Liposomes consisting of 3β-[N-(N′, N′-dimethylamino ethane)carbamoyl]-cholesterol (DC-CHOL), cholesterol (CHOL), and dioleoylphosphatidylethanolamine (DOPE) at a molar ratio of 1:1:0.5 were created and used as carriers to deliver an apoptosis-inducing plasmid encoding the tumor necrosis factor-related apoptosis-inducing ligand (pTRAIL) gene, along with the toll-like receptor (TLR7) agonist Rsiquimod (R848). The rationale behind this design is that More > Graphic Abstract

    Remodeling tumor microenvironment using pH-sensitive biomimetic co-delivery of TRAIL/R848 liposomes against colorectal cancer

  • Open Access

    COMMENTARY

    A commentary: harnessing vesicles power with new scenes of membrane-based devices for drug delivery

    NOELIA L. D´ELĺA1,2, A. NOEL GRAVINA1,2, LUCIANO A. BENEDINI2,3,*, PAULA V. MESSINA1,2

    BIOCELL, Vol.48, No.10, pp. 1401-1403, 2024, DOI:10.32604/biocell.2024.055512 - 02 October 2024

    Abstract This work shows relevant interactions between cells and drug-delivery systems based on vesicles crucial for therapeutic activity. This interplay drives strategies for the design of new drug-carry. Among the described systems are found liposomes, extracellular vesicles, and hybrid systems. The text details their properties, advantages, and constraints, and eventually, a perspective about the future of these formulations is proposed. More >

  • Open Access

    REVIEW

    Spliceosome-mediated RNA trans-splicing: a strategy for Huntington’s disease gene therapy

    QINGYANG ZHANG, SHUXIAN HUANG, DAN WENG*

    BIOCELL, Vol.48, No.10, pp. 1443-1453, 2024, DOI:10.32604/biocell.2024.053794 - 02 October 2024

    Abstract Huntington’s disease (HD) is a debilitating neurodegenerative disorder caused by an abnormal expansion of CAG repeats (Cytosine, Adenine, Guanine) in the huntingtin gene (HTT). This mutation leads to the production of a mutant huntingtin protein, resulting in neuronal dysfunction and cell death. Current treatments primarily focus on symptomatic relief and do not address the underlying genetic cause. This review explores spliceosome-mediated RNA trans-splicing (SMaRT) therapy as an innovative and potential approach for HD treatment. SMaRT leverages the cell’s natural splicing machinery to correct mutant mRNA, thereby reducing toxic protein levels while restoring functional protein production. We More >

  • Open Access

    REVIEW

    Neural stem cell-derived exosomes: a cell-free transplant for potential cure of neurological diseases

    JIAJUN HUANG1,#, WEI WANG1,#, WENTONG LIN2, HENGSEN CAI3, ZHIHAN ZHU1, WAQAS AHMED4, QIANKUN ZHANG1, JIALE LIU1, YIFAN ZHANG1, RONG LI1, ZHINUO LI1, AHSAN ALI KHAN5, DENG LU3, YONG HU6, LUKUI CHEN1,*

    BIOCELL, Vol.48, No.10, pp. 1405-1418, 2024, DOI:10.32604/biocell.2024.053148 - 02 October 2024

    Abstract Degeneration and death of nerve cells are inevitable with the occurrence and progression of nervous system disorders. Researchers transplanted neural stem cells into relevant areas, trying to solve the difficulty of neural cell loss by differentiating neural stem cells into various nerve cells. In recent years, however, studies have shown that transplanted neural stem cells help neural tissues regenerate and return to normal through paracrine action rather than just replacing cells. Exosomes are essential paracrine mediators, which can participate in cell communication through substance transmission. In this regard, this review mainly discusses the current research More >

Displaying 11-20 on page 2 of 264. Per Page