Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access


    An Improved UNet Lightweight Network for Semantic Segmentation of Weed Images in Corn Fields

    Yu Zuo1, Wenwen Li2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4413-4431, 2024, DOI:10.32604/cmc.2024.049805

    Abstract In cornfields, factors such as the similarity between corn seedlings and weeds and the blurring of plant edge details pose challenges to corn and weed segmentation. In addition, remote areas such as farmland are usually constrained by limited computational resources and limited collected data. Therefore, it becomes necessary to lighten the model to better adapt to complex cornfield scene, and make full use of the limited data information. In this paper, we propose an improved image segmentation algorithm based on unet. Firstly, the inverted residual structure is introduced into the contraction path to reduce the… More >

  • Open Access


    SGT-Net: A Transformer-Based Stratified Graph Convolutional Network for 3D Point Cloud Semantic Segmentation

    Suyi Liu1,*, Jianning Chi1, Chengdong Wu1, Fang Xu2,3,4, Xiaosheng Yu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4471-4489, 2024, DOI:10.32604/cmc.2024.049450

    Abstract In recent years, semantic segmentation on 3D point cloud data has attracted much attention. Unlike 2D images where pixels distribute regularly in the image domain, 3D point clouds in non-Euclidean space are irregular and inherently sparse. Therefore, it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space. Most current methods either focus on local feature aggregation or long-range context dependency, but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks. In this paper, we propose a Transformer-based… More >

  • Open Access


    CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation

    Qixiang Tong, Zhipeng Zhu, Min Zhang, Kerui Cao, Haihua Xing*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1353-1375, 2024, DOI:10.32604/cmc.2024.049187

    Abstract High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presence of occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficulty of segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scale features based on DeepLabv3+ is designed to address the difficulties of small object segmentation and blurred target edge segmentation. First, we use CrossFormer as the backbone feature extraction network to achieve the interaction between large- and small-scale features, and establish self-attention associations between features at both large and small… More >

  • Open Access


    Automatic Road Tunnel Crack Inspection Based on Crack Area Sensing and Multiscale Semantic Segmentation

    Dingping Chen1, Zhiheng Zhu2, Jinyang Fu1,3, Jilin He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1679-1703, 2024, DOI:10.32604/cmc.2024.049048

    Abstract The detection of crack defects on the walls of road tunnels is a crucial step in the process of ensuring travel safety and performing routine tunnel maintenance. The automatic and accurate detection of cracks on the surface of road tunnels is the key to improving the maintenance efficiency of road tunnels. Machine vision technology combined with a deep neural network model is an effective means to realize the localization and identification of crack defects on the surface of road tunnels. We propose a complete set of automatic inspection methods for identifying cracks on the walls… More >

  • Open Access


    Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images

    Supeng Yu1, Fen Huang1,*, Chengcheng Fan2,3,4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 549-562, 2024, DOI:10.32604/cmc.2024.048608

    Abstract Significant advancements have been achieved in road surface extraction based on high-resolution remote sensing image processing. Most current methods rely on fully supervised learning, which necessitates enormous human effort to label the image. Within this field, other research endeavors utilize weakly supervised methods. These approaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such as scribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised and edge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equipped with a distinct decoder module dedicated… More >

  • Open Access


    A Random Fusion of Mix3D and PolarMix to Improve Semantic Segmentation Performance in 3D Lidar Point Cloud

    Bo Liu1,2, Li Feng1,*, Yufeng Chen3

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 845-862, 2024, DOI:10.32604/cmes.2024.047695

    Abstract This paper focuses on the effective utilization of data augmentation techniques for 3D lidar point clouds to enhance the performance of neural network models. These point clouds, which represent spatial information through a collection of 3D coordinates, have found wide-ranging applications. Data augmentation has emerged as a potent solution to the challenges posed by limited labeled data and the need to enhance model generalization capabilities. Much of the existing research is devoted to crafting novel data augmentation methods specifically for 3D lidar point clouds. However, there has been a lack of focus on making the… More >

  • Open Access


    Part-Whole Relational Few-Shot 3D Point Cloud Semantic Segmentation

    Shoukun Xu1, Lujun Zhang1, Guangqi Jiang1, Yining Hua2, Yi Liu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3021-3039, 2024, DOI:10.32604/cmc.2023.045853

    Abstract This paper focuses on the task of few-shot 3D point cloud semantic segmentation. Despite some progress, this task still encounters many issues due to the insufficient samples given, e.g., incomplete object segmentation and inaccurate semantic discrimination. To tackle these issues, we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity, which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks (CapsNets) in the embedding network. Concretely, the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature… More >

  • Open Access


    DGConv: A Novel Convolutional Neural Network Approach for Weld Seam Depth Image Detection

    Pengchao Li1,2,3,*, Fang Xu1,2,3,4, Jintao Wang1,2, Haibing Guo4, Mingmin Liu4, Zhenjun Du4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1755-1771, 2024, DOI:10.32604/cmc.2023.047057

    Abstract We propose a novel image segmentation algorithm to tackle the challenge of limited recognition and segmentation performance in identifying welding seam images during robotic intelligent operations. Initially, to enhance the capability of deep neural networks in extracting geometric attributes from depth images, we developed a novel deep geometric convolution operator (DGConv). DGConv is utilized to construct a deep local geometric feature extraction module, facilitating a more comprehensive exploration of the intrinsic geometric information within depth images. Secondly, we integrate the newly proposed deep geometric feature module with the Fully Convolutional Network (FCN8) to establish a… More >

  • Open Access


    Enhanced Wolf Pack Algorithm (EWPA) and Dense-kUNet Segmentation for Arterial Calcifications in Mammograms

    Afnan M. Alhassan*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2207-2223, 2024, DOI:10.32604/cmc.2024.046427

    Abstract Breast Arterial Calcification (BAC) is a mammographic decision dissimilar to cancer and commonly observed in elderly women. Thus identifying BAC could provide an expense, and be inaccurate. Recently Deep Learning (DL) methods have been introduced for automatic BAC detection and quantification with increased accuracy. Previously, classification with deep learning had reached higher efficiency, but designing the structure of DL proved to be an extremely challenging task due to overfitting models. It also is not able to capture the patterns and irregularities presented in the images. To solve the overfitting problem, an optimal feature set has… More >

  • Open Access


    CFSA-Net: Efficient Large-Scale Point Cloud Semantic Segmentation Based on Cross-Fusion Self-Attention

    Jun Shu1,2, Shuai Wang1,2, Shiqi Yu1,2, Jie Zhang3,*

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 2677-2697, 2023, DOI:10.32604/cmc.2023.045818

    Abstract Traditional models for semantic segmentation in point clouds primarily focus on smaller scales. However, in real-world applications, point clouds often exhibit larger scales, leading to heavy computational and memory requirements. The key to handling large-scale point clouds lies in leveraging random sampling, which offers higher computational efficiency and lower memory consumption compared to other sampling methods. Nevertheless, the use of random sampling can potentially result in the loss of crucial points during the encoding stage. To address these issues, this paper proposes cross-fusion self-attention network (CFSA-Net), a lightweight and efficient network architecture specifically designed for… More >

Displaying 1-10 on page 1 of 45. Per Page