Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (73)
  • Open Access

    ARTICLE

    3D Kronecker Convolutional Feature Pyramid for Brain Tumor Semantic Segmentation in MR Imaging

    Kainat Nazir1, Tahir Mustafa Madni1, Uzair Iqbal Janjua1, Umer Javed2, Muhammad Attique Khan3, Usman Tariq4, Jae-Hyuk Cha5,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2861-2877, 2023, DOI:10.32604/cmc.2023.039181 - 08 October 2023

    Abstract Brain tumor significantly impacts the quality of life and changes everything for a patient and their loved ones. Diagnosing a brain tumor usually begins with magnetic resonance imaging (MRI). The manual brain tumor diagnosis from the MRO images always requires an expert radiologist. However, this process is time-consuming and costly. Therefore, a computerized technique is required for brain tumor detection in MRI images. Using the MRI, a novel mechanism of the three-dimensional (3D) Kronecker convolution feature pyramid (KCFP) is used to segment brain tumors, resolving the pixel loss and weak processing of multi-scale lesions. A… More >

  • Open Access

    ARTICLE

    Point Cloud Based Semantic Segmentation Method for Unmanned Shuttle Bus

    Sidong Wu, Cuiping Duan, Bufan Ren, Liuquan Ren, Tao Jiang, Jianying Yuan*, Jiajia Liu, Dequan Guo

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 2707-2726, 2023, DOI:10.32604/iasc.2023.038948 - 11 September 2023

    Abstract The complexity of application scenarios and the enormous volume of point cloud data make it difficult to quickly and effectively segment the scenario only based on the point cloud. In this paper, to address the semantic segmentation for safety driving of unmanned shuttle buses, an accurate and effective point cloud-based semantic segmentation method is proposed for specified scenarios (such as campus). Firstly, we analyze the characteristic of the shuttle bus scenarios and propose to use ROI selection to reduce the total points in computation, and then propose an improved semantic segmentation model based on Cylinder3D,… More >

  • Open Access

    ARTICLE

    An Improved High Precision 3D Semantic Mapping of Indoor Scenes from RGB-D Images

    Jing Xin1,*, Kenan Du1, Jiale Feng1, Mao Shan2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2621-2640, 2023, DOI:10.32604/cmes.2023.027467 - 03 August 2023

    Abstract This paper proposes an improved high-precision 3D semantic mapping method for indoor scenes using RGB-D images. The current semantic mapping algorithms suffer from low semantic annotation accuracy and insufficient real-time performance. To address these issues, we first adopt the Elastic Fusion algorithm to select key frames from indoor environment image sequences captured by the Kinect sensor and construct the indoor environment space model. Then, an indoor RGB-D image semantic segmentation network is proposed, which uses multi-scale feature fusion to quickly and accurately obtain object labeling information at the pixel level of the spatial point cloud More >

  • Open Access

    ARTICLE

    RO-SLAM: A Robust SLAM for Unmanned Aerial Vehicles in a Dynamic Environment

    Jingtong Peng*

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2275-2291, 2023, DOI:10.32604/csse.2023.039272 - 28 July 2023

    Abstract When applied to Unmanned Aerial Vehicles (UAVs), existing Simultaneous Localization and Mapping (SLAM) algorithms are constrained by several factors, notably the interference of dynamic outdoor objects, the limited computing performance of UAVs, and the holes caused by dynamic objects removal in the map. We proposed a new SLAM system for UAVs in dynamic environments to solve these problems based on ORB-SLAM2. We have improved the Pyramid Scene Parsing Network (PSPNet) using Depthwise Separable Convolution to reduce the model parameters. We also incorporated an auxiliary loss function to supervise the hidden layer to enhance accuracy. Then… More >

  • Open Access

    ARTICLE

    A Hybrid Attention-Based Residual Unet for Semantic Segmentation of Brain Tumor

    Wajiha Rahim Khan1, Tahir Mustafa Madni1, Uzair Iqbal Janjua1, Umer Javed2, Muhammad Attique Khan3, Majed Alhaisoni4, Usman Tariq5, Jae-Hyuk Cha6,*

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 647-664, 2023, DOI:10.32604/cmc.2023.039188 - 08 June 2023

    Abstract Segmenting brain tumors in Magnetic Resonance Imaging (MRI) volumes is challenging due to their diffuse and irregular shapes. Recently, 2D and 3D deep neural networks have become famous for medical image segmentation because of the availability of labelled datasets. However, 3D networks can be computationally expensive and require significant training resources. This research proposes a 3D deep learning model for brain tumor segmentation that uses lightweight feature extraction modules to improve performance without compromising contextual information or accuracy. The proposed model, called Hybrid Attention-Based Residual Unet (HA-RUnet), is based on the Unet architecture and utilizes… More >

  • Open Access

    ARTICLE

    Optimizing Spatial Relationships in GCN to Improve the Classification Accuracy of Remote Sensing Images

    Zimeng Yang, Qiulan Wu, Feng Zhang*, Xuefei Chen, Weiqiang Wang, Xueshen Zhang

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 491-506, 2023, DOI:10.32604/iasc.2023.037558 - 29 April 2023

    Abstract Semantic segmentation of remote sensing images is one of the core tasks of remote sensing image interpretation. With the continuous development of artificial intelligence technology, the use of deep learning methods for interpreting remote-sensing images has matured. Existing neural networks disregard the spatial relationship between two targets in remote sensing images. Semantic segmentation models that combine convolutional neural networks (CNNs) and graph convolutional neural networks (GCNs) cause a lack of feature boundaries, which leads to the unsatisfactory segmentation of various target feature boundaries. In this paper, we propose a new semantic segmentation model for remote… More >

  • Open Access

    ARTICLE

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

    Ying Li1,2, Guanghong Gong1, Dan Wang1, Ni Li1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2237-2265, 2023, DOI:10.32604/cmes.2023.025193 - 09 March 2023

    Abstract There are two types of methods for image segmentation. One is traditional image processing methods, which are sensitive to details and boundaries, yet fail to recognize semantic information. The other is deep learning methods, which can locate and identify different objects, but boundary identifications are not accurate enough. Both of them cannot generate entire segmentation information. In order to obtain accurate edge detection and semantic information, an Adaptive Boundary and Semantic Composite Segmentation method (ABSCS) is proposed. This method can precisely semantic segment individual objects in large-size aerial images with limited GPU performances. It includes… More > Graphic Abstract

    Adaptive Boundary and Semantic Composite Segmentation Method for Individual Objects in Aerial Images

  • Open Access

    ARTICLE

    A Semantic Adversarial Network for Detection and Classification of Myopic Maculopathy

    Qaisar Abbas1, Abdul Rauf Baig1,*, Ayyaz Hussain2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1483-1499, 2023, DOI:10.32604/cmc.2023.036366 - 06 February 2023

    Abstract The diagnosis of eye disease through deep learning (DL) technology is the latest trend in the field of artificial intelligence (AI). Especially in diagnosing pathologic myopia (PM) lesions, the implementation of DL is a difficult task because of the classification complexity and definition system of PM. However, it is possible to design an AI-based technique that can identify PM automatically and help doctors make relevant decisions. To achieve this objective, it is important to have adequate resources such as a high-quality PM image dataset and an expert team. The primary aim of this research is… More >

  • Open Access

    ARTICLE

    Semantic Segmentation by Using Down-Sampling and Subpixel Convolution: DSSC-UNet

    Young-Man Kwon, Sunghoon Bae, Dong-Keun Chung, Myung-Jae Lim*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 683-696, 2023, DOI:10.32604/cmc.2023.033370 - 06 February 2023

    Abstract Recently, semantic segmentation has been widely applied to image processing, scene understanding, and many others. Especially, in deep learning-based semantic segmentation, the U-Net with convolutional encoder-decoder architecture is a representative model which is proposed for image segmentation in the biomedical field. It used max pooling operation for reducing the size of image and making noise robust. However, instead of reducing the complexity of the model, max pooling has the disadvantage of omitting some information about the image in reducing it. So, this paper used two diagonal elements of down-sampling operation instead of it. We think… More >

  • Open Access

    ARTICLE

    Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net

    Chuanlong Sun, Hong Zhao*, Liang Mu, Fuliang Xu, Laiwei Lu

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 787-801, 2023, DOI:10.32604/cmes.2023.025119 - 05 January 2023

    Abstract Image semantic segmentation has become an essential part of autonomous driving. To further improve the generalization ability and the robustness of semantic segmentation algorithms, a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism (SE) and Depthwise Separable Convolution (DSC) is designed. Meanwhile, Adam-GC, an Adam optimization algorithm based on Gradient Compression (GC), is proposed to improve the training speed, segmentation accuracy, generalization ability and stability of the algorithm network. To verify and compare the effectiveness of the algorithm network proposed in this paper, the trained network model is used for experimental verification and comparative test More >

Displaying 41-50 on page 5 of 73. Per Page