Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,161)
  • Open Access

    ARTICLE

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

    Zhengrong Shi1,3, Jie Ren1, Tao Zhang1,3,*, Yanming Shen2,*

    Energy Engineering, Vol.121, No.3, pp. 681-702, 2024, DOI:10.32604/ee.2023.045238

    Abstract Building energy consumption and building carbon emissions both account for more than 20% of their total national values in China. Building employing phase change material (PCM) for passive temperature control shows a promising prospect in meeting the comfort demand and reducing energy consumption simultaneously. However, there is a lack of more detailed research on the interaction between the location and thickness of PCM and indoor natural convection, as well as indoor temperature distribution. In this study, the numerical model of a passive temperature-controlled building integrating the developed PCM module is established with the help of ANSYS. In which, the actual… More > Graphic Abstract

    The Effects of Thickness and Location of PCM on the Building’s Passive Temperature-Control–A Numerical Study

  • Open Access

    ARTICLE

    Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control

    Jun Zhao*, Chaoying Yang, Ran Li, Jinge Song

    Energy Engineering, Vol.121, No.3, pp. 747-767, 2024, DOI:10.32604/ee.2023.042806

    Abstract Due to the impact of source-load prediction power errors and uncertainties, the actual operation of the park will have a wide range of fluctuations compared with the expected state, resulting in its inability to achieve the expected economy. This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control (MPC). In the day-ahead stage, an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time scale of 15 min. In… More >

  • Open Access

    ARTICLE

    Physics Based Digital Twin Modelling from Theory to Concept Implementation Using Coiled Springs Used in Suspension Systems

    Mohamed Ammar1,*, Alireza Mousavi1, Hamed Al-Raweshidy2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 1-31, 2024, DOI:10.32604/dedt.2023.044930

    Abstract The advent of technology around the globe based on the Internet of Things, Cloud Computing, Big Data, Cyber-Physical Systems, and digitalisation. This advancement introduced industry 4.0. It is challenging to measure how enterprises adopt the new technologies. Industry 4.0 introduced Digital Twins, given that no specific terms or definitions are given to Digital Twins still challenging to define or conceptualise the Digital Twins. Many academics and industries still use old technologies, naming it Digital Twins. This young technology is in danger of reaching the plateau despite the immense benefit to sectors. This paper proposes a novel and unique definition for… More >

  • Open Access

    ARTICLE

    Finite Element Simulation Analysis of a Novel 3D-FRSPA for Crawling Locomotion

    Bingzhu Wang1,*, Xiangrui Ye2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1401-1425, 2024, DOI:10.32604/cmes.2024.047364

    Abstract A novel three-dimensional-fiber reinforced soft pneumatic actuator (3D-FRSPA) inspired by crab claw and human hand structure that can bend and deform independently in each segment is proposed. It has an omni-directional bending configuration, and the fibers twined symmetrically on both sides to improve the bending performance of FRSPA. In this paper, the static and kinematic analysis of 3D-FRSPA are carried out in detail. The effects of fiber, pneumatic chamber and segment length, and circular air chamber radius of 3D-FRSPA on the mechanical performance of the actuator are discussed, respectively. The soft mobile robot composed of 3D-FRSPA has the ability to… More >

  • Open Access

    ARTICLE

    Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling

    Peng Qiao1, Shuangshuang Lan1,*, Hongbiao Gu2, Zhengtan Mao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1381-1399, 2024, DOI:10.32604/cmes.2023.045662

    Abstract Based on global initiatives such as the clean energy transition and the development of renewable energy, the pumped storage power station has become a new and significant way of energy storage and regulation, and its construction environment is more complex than that of a traditional reservoir. In particular, the stability of the rock strata in the underground reservoirs is affected by the seepage pressure and rock stress, which presents some challenges in achieving engineering safety and stability. Using the advantages of the numerical simulation method in dealing deal with nonlinear problems in engineering stability, in this study, the stability of… More > Graphic Abstract

    Simulation of Underground Reservoir Stability of Pumped Storage Power Station Based on Fluid-Structure Coupling

  • Open Access

    ARTICLE

    Numerical Simulation of the Seismic Response of a Horizontal Storage Tank Based on a SPH–FEM Coupling Method

    Peilei Yan1,2,*, Endong Guo1,2, Houli Wu1,2, Liangchao Zhang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1655-1678, 2024, DOI:10.32604/cmes.2023.044760

    Abstract A coupled numerical calculation method combining smooth particle hydrodynamics (SPH) and the finite element method (FEM) was implemented to investigate the seismic response of horizontal storage tanks. A numerical model of a horizontal storage tank featuring a free liquid surface under seismic action was constructed using the SPH–FEM coupling method. The stored liquid was discretized using SPH particles, while the tank and supports were discretized using the FEM. The interaction between the stored liquid and the tank was simulated by using the meshless particle contact method. Then, the numerical simulation results were compared and analyzed against seismic simulation shaking table… More >

  • Open Access

    ARTICLE

    Investigations on High-Speed Flash Boiling Atomization of Fuel Based on Numerical Simulations

    Wei Zhong1, Zhenfang Xin2, Lihua Wang1,*, Haiping Liu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 1427-1453, 2024, DOI:10.32604/cmes.2023.031271

    Abstract Flash boiling atomization (FBA) is a promising approach for enhancing spray atomization, which can generate a fine and more evenly distributed spray by increasing the fuel injection temperature or reducing the ambient pressure. However, when the outlet speed of the nozzle exceeds 400 m/s, investigating high-speed flash boiling atomization (HFBA) becomes quite challenging. This difficulty arises from the involvement of many complex physical processes and the requirement for a very fine mesh in numerical simulations. In this study, an HFBA model for gasoline direct injection (GDI) is established. This model incorporates primary and secondary atomization, as well as vaporization and… More >

  • Open Access

    ARTICLE

    Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics

    Junhui Li1, Haotian Zhang1, Cuiping Li1,*, Xingxu Zhu1, Ruitong Liu2, Fangwei Duan2, Yongming Peng3

    Energy Engineering, Vol.121, No.2, pp. 291-313, 2024, DOI:10.32604/ee.2023.027593

    Abstract In the existing power system with a large-scale hydrogen storage system, there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system. In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation, and speed up the process of electric-hydrogen-electricity conversion. This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit, and also establishes a charging and discharging efficiency model that considers the temperature and internal gas partial pressure of the hydrogen… More >

  • Open Access

    PROCEEDINGS

    Simulation of Wave Propagation Through Inhomogeneous Medium Waveguides Based on Green’s Functions

    Wenzhi Xu1, ZhuoJia Fu1,*, Qiang Xi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2023.010437

    Abstract Acoustic wave propagation through an inhomogeneous medium may lead to undergo substantial modification. This paper proposed a Green’s functions-based method for the simulation of wave propagation through inhomogeneous medium waveguides. Under ideal conditions, a modified wave equation is derived by variable transformations, in which only the wave speed varies with spatial coordinates. Based on the modified wave equation the acoustic Green’s functions are derived. Then, the localized method of fundamental solution (LMFS) in conjunction with the acoustic Green’s functions is introduced to solve the modified wave equation. In the LMFS, the acoustic Green’s function is considered as its basic function… More >

  • Open Access

    PROCEEDINGS

    Numerical Study on the Thermal Management of Lithium-Ion Battery Pack Based on Heat Pipes and Phase Change Material

    Chen Gao1, Kai Sun1, QingZhi Hou2,3, KeWei Song1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.4, pp. 1-3, 2023, DOI:10.32604/icces.2023.08905

    Abstract As the fossil energy is increasingly exhausted and air pollution becomes more and more serious, blade electric vehicles equipped with rechargeable lithium-ion battery turns into the major developing direction of new energy automobile [1-3]. Lithium-ion batteries have the advantages of high energy density, light weight, and no pollution, and thereby are widely used in electric vehicles [4,5]. However, the working performance and service life of lithium-ion batteries are greatly affected by temperature [6]. Excessive high and low temperature will reduce the charge and discharge capacity of lithium-ion batteries, shorten their service life, and even lead to safety accidents [7]. Therefore,… More >

Displaying 31-40 on page 4 of 1161. Per Page