Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (69)
  • Open Access

    ARTICLE

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

    Xiaoyu Chen*

    Journal of Renewable Materials, Vol.12, No.4, pp. 815-826, 2024, DOI:10.32604/jrm.2024.048470 - 12 June 2024

    Abstract A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions. The core, made of sodium alginate-g-polyacrylamide and attapulgite nanofibers, was cross-linked by Calcium ions (Ca). The shell, composed of a chitosan/activated carbon mixture, was then coated onto the core. Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate. Scanning electron microscopy images showed the core-shell structure. The core exhibited a high water uptake ratio, facilitating the diffusion of methylene blue into the core. During the diffusion process, the methylene blue was first adsorbed by More > Graphic Abstract

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

  • Open Access

    ARTICLE

    Activated Carbon from Nipa Palm Fronds (Nypa fruticans) with H3PO4 and KOH Activators as Fe Adsorbers

    Ninis Hadi Haryanti1,*, Eka Suarso1, Tetti N. Manik1, Suryajaya1, Nurlita Sari1, Darminto2

    Journal of Renewable Materials, Vol.12, No.2, pp. 203-214, 2024, DOI:10.32604/jrm.2023.043549 - 11 March 2024

    Abstract Nipa palm is one of the non-wood plants rich in lignocellulosic content. In this study, palm fronds were converted into activated carbon, and their physical, chemical, and morphological properties were characterized. The resulting activated carbon was then applied as an adsorbent of Fe metal in peat water. The carbonization process was carried out for 60 min, followed by sintering at 400°C for 5 h with a particle size of 200 mesh. KOH and H3PO4 were used in the chemical activation process for 24 h. KOH-activated carbon contained 6.13% of moisture, 4.55% of ash, 17.02% of volatile… More > Graphic Abstract

    Activated Carbon from Nipa Palm Fronds (<i>Nypa fruticans</i>) with H<sub>3</sub>PO<sub>4</sub> and KOH Activators as Fe Adsorbers

  • Open Access

    ARTICLE

    Analysis of CH4 and H2 Adsorption on Heterogeneous Shale Surfaces Using a Molecular Dynamics Approach

    Surajudeen Sikiru1,*, Hassan Soleimani2, Amir Rostami1, Mohammed Falalu Hamza1,3, Lukmon Owolabi Afolabi4

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 31-44, 2024, DOI:10.32604/fdmp.2023.029281 - 08 November 2023

    Abstract Determining the adsorption of shale gas on complex surfaces remains a challenge in molecular simulation studies. Difficulties essentially stem from the need to create a realistic shale structure model in terms of mineral heterogeneity and multiplicity. Moreover, precise characterization of the competitive adsorption of hydrogen and methane in shale generally requires the experimental determination of the related adsorptive capacity. In this study, the adsorption of adsorbates, methane (CH4), and hydrogen (H2) on heterogeneous shale surface models of Kaolinite, Orthoclase, Muscovite, Mica, C60, and Butane has been simulated in the frame of a molecular dynamic’s numerical technique. The More >

  • Open Access

    ARTICLE

    Investigation of Polypyrrole and Polypyrrolepolyethyleneimine as Adsorbents for Methyl Orange Dye Adsorption

    NORHABIBAH MOHAMAD1,*, NOORDINI M. SALLEH1,2, HABIBUN NABI MUHAMMAD EKRAMUL MAHMUD1

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 165-189, 2023, DOI:10.32381/JPM.2023.40.3-4.4

    Abstract The present study has explored the adsorption properties of polypyrrole-based adsorbents (polypyrrole and polypyrrole-polyethyleneimine composite) as novel conducting polymers in adsorbing methyl orange (MO) (an anionic dye) effectively from aqueous solution. The adsorption characteristics of the prepared polymer-based adsorbents were characterized by BET, FTIR, FESEM, and XRD methods. The effectiveness of PPy-based adsorbents for MO dye adsorption was examined using the batch adsorption method. Different parameters were changed during the adsorption process, including contact time, solution pH, and adsorbent dosage. The highest BET surface area of the PPy-PEI composite was found to be 11.85 m2 /g,… More >

  • Open Access

    ARTICLE

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

    Haodong Li1, Huiling Du1,*, Le Kang1, Yewen Zhang1, Tong Lu1, Yuchan Zhang1, Lan Yang2, Shijie Song2

    Journal of Renewable Materials, Vol.11, No.12, pp. 4161-4174, 2023, DOI:10.32604/jrm.2023.028877 - 10 November 2023

    Abstract The large accumulation of coal gangue, a common industrial solid waste, causes severe environmental problems, and green development strategies are required to transform this waste into high-value-added products. In this study, low-cost ceramsites adsorbents were prepared from waste gangue, silt coal, and peanut shells and applied to remove the organic dye methylene blue from wastewater. We investigated the microstructure of ceramsites and the effects of the sintering atmosphere, sintering temperature, and solution pH on their adsorption performance. The ceramsites sintered at 800°C under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the… More > Graphic Abstract

    Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites: Adsorption Kinetics and Mechanism Analysis

  • Open Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang

    Journal of Renewable Materials, Vol.11, No.12, pp. 4079-4095, 2023, DOI:10.32604/jrm.2023.028885 - 10 November 2023

    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption… More > Graphic Abstract

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

  • Open Access

    ARTICLE

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

    Suprapto Suprapto, Putri Augista Nur Azizah, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.12, pp. 4007-4023, 2023, DOI:10.32604/jrm.2023.031210 - 10 November 2023

    Abstract This research focuses on the effective removal of methylene blue dye using silica gel synthesized from chemical glass bottle waste as an environmentally friendly and cost-effective adsorbent. The adsorption process was optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM) to investigate the influence of pH (6; 8 and 10), contact time (15; 30 and 45 min), adsorbent mass (30; 50 and 70 mg), and initial concentration (20; 50 and 80 mg/L) of the adsorbate on the adsorption efficiency. The BBD was conducted using Google Colaboratory software, which encompassed 27 experiments with randomly assigned… More > Graphic Abstract

    Silica Gel from Chemical Glass Bottle Waste as Adsorbent for Methylene Blue: Optimization Using BBD

  • Open Access

    REVIEW

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

    Annisa Ardiyanti, Suprapto Suprapto, Yatim Lailun Ni’mah*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3789-3806, 2023, DOI:10.32604/jrm.2023.031354 - 31 October 2023

    Abstract Dyes are pervasive contaminants in wastewater, posing significant health risks to both humans and animals. Among the various methods employed for effective dye removal, adsorption has emerged as a highly promising approach due to its notable advantages, including high efficiency, cost-effectiveness, low energy consumption, and operational simplicity compared to alternative treatments. This comprehensive review focuses on investigating adsorbents derived from biowastes and biomass, specifically carbon-based and non-conventional adsorbents, for the removal of malachite green, a widely used dye known for its toxic and carcinogenic properties. Carbon-based adsorbents encompass two main types: activated carbon and biochar, More > Graphic Abstract

    Malachite Green Adsorption Using Carbon-Based and Non-Conventional Adsorbent Made from Biowaste and Biomass: A Review

  • Open Access

    PROCEEDINGS

    Low-Velocity Impact Response of Sandwich Composite Panels with Shear Stiffening Gel Filled Honeycomb Cores

    Gaojian Lin11,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09075

    Abstract Over decades, sandwich composite panels (SCPs) have been widely used to fabricate lightweight but strong structural components. However, composite sandwich structures are susceptible to impact damage, which may severely reduce the structural stiffness, stability, and load-carrying capacity[1, 2]. In order to enhance the anti-impact capacity of SCPs, a series of novel core structures[3-5] and filling materials[6-8] have been proposed and tested. One of them is the shear thickening fluids (STFs), which mechanical behavior changed from liquid to solid when subjected to high strain rate shear loading[7, 9]. For example, Fu et al.[10] filled the honeycomb… More >

  • Open Access

    PROCEEDINGS

    Ultrafast Adsorption of Tiny Oil Droplets Within Water by Superhydrophobic-Superoleophilic Conical Micro-arrays

    Yunyun Song1, Xu Zhang1, Jialei Yang1, Zhongqiang Zhang1,*, Guanggui Cheng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09916

    Abstract Although floating oil with large particle sizes can easily be separated from water by membrane separation methods, tiny oil droplets with tremendously small volume force and density gradient at oil-water interfaces within water lead to barriers of oil-water separation. Consequently, tiny oil droplets remain in the water, resulting in energy waste, environmental pollution and biological health hazard. Traditional super-wetting membranes with extremely small pore sizes were easily blocked during the oil-water separation process. Inspired by the cactus and rice leaf, we developed a superhydrophobic-superoleophilic surface with conical micro-arrays to realize ultrafast adsorption of tiny oil… More >

Displaying 11-20 on page 2 of 69. Per Page