Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (462)
  • Open Access

    ARTICLE

    Semi-Fragile Image Watermarking Using Quantization-Based DCT for Tamper Localization

    Agit Amrullah, Ferda Ernawan*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.069229 - 09 December 2025

    Abstract This paper proposes a tamper detection technique for semi-fragile watermarking using Quantization-based Discrete Cosine Transform (DCT) for tamper localization. In this study, the proposed embedding strategy is investigated by experimental tests over the diagonal order of the DCT coefficients. The cover image is divided into non-overlapping blocks of size 8 × 8 pixels. The DCT is applied to each block, and the coefficients are arranged using a zig-zag pattern within the block. In this study, the low-frequency coefficients are selected to examine the impact of the imperceptibility score and tamper detection accuracy. High accuracy of… More >

  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    Gradient-Guided Assembly Instruction Relocation for Adversarial Attacks Against Binary Code Similarity Detection

    Ran Wei*, Hui Shu

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-23, 2026, DOI:10.32604/cmc.2025.069562 - 10 November 2025

    Abstract Transformer-based models have significantly advanced binary code similarity detection (BCSD) by leveraging their semantic encoding capabilities for efficient function matching across diverse compilation settings. Although adversarial examples can strategically undermine the accuracy of BCSD models and protect critical code, existing techniques predominantly depend on inserting artificial instructions, which incur high computational costs and offer limited diversity of perturbations. To address these limitations, we propose AIMA, a novel gradient-guided assembly instruction relocation method. Our method decouples the detection model into tokenization, embedding, and encoding layers to enable efficient gradient computation. Since token IDs of instructions are… More >

  • Open Access

    ARTICLE

    PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs

    Abeer Alhuzali1,*, Qamar Al-Qahtani1, Asmaa Niyazi1, Lama Alshehri1, Fatemah Alharbi2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069491 - 10 November 2025

    Abstract The surge in smishing attacks underscores the urgent need for robust, real-time detection systems powered by advanced deep learning models. This paper introduces PhishNet, a novel ensemble learning framework that integrates transformer-based models (RoBERTa) and large language models (LLMs) (GPT-OSS 120B, LLaMA3.3 70B, and Qwen3 32B) to enhance smishing detection performance significantly. To mitigate class imbalance, we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques. Our system employs a dual-layer voting mechanism: weighted majority voting among LLMs and a final ensemble vote to classify messages as ham, spam, or smishing. Experimental More >

  • Open Access

    REVIEW

    Unveiling Zero-Click Attacks: Mapping MITRE ATT&CK Framework for Enhanced Cybersecurity

    Md Shohel Rana1,2,3,4,*, Tonmoy Ghosh3, Mohammad Nur Nobi5, Anichur Rahman1,6,*, Andrew H. Sung4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-38, 2026, DOI:10.32604/cmc.2025.069212 - 10 November 2025

    Abstract Zero-click attacks represent an advanced cybersecurity threat, capable of compromising devices without user interaction. High-profile examples such as Pegasus, Simjacker, Bluebugging, and Bluesnarfing exploit hidden vulnerabilities in software and communication protocols to silently gain access, exfiltrate data, and enable long-term surveillance. Their stealth and ability to evade traditional defenses make detection and mitigation highly challenging. This paper addresses these threats by systematically mapping the tactics and techniques of zero-click attacks using the MITRE ATT&CK framework, a widely adopted standard for modeling adversarial behavior. Through this mapping, we categorize real-world attack vectors and better understand how… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    Graph-Based Intrusion Detection with Explainable Edge Classification Learning

    Jaeho Shin1, Jaekwang Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-26, 2026, DOI:10.32604/cmc.2025.068767 - 10 November 2025

    Abstract Network attacks have become a critical issue in the internet security domain. Artificial intelligence technology-based detection methodologies have attracted attention; however, recent studies have struggled to adapt to changing attack patterns and complex network environments. In addition, it is difficult to explain the detection results logically using artificial intelligence. We propose a method for classifying network attacks using graph models to explain the detection results. First, we reconstruct the network packet data into a graphical structure. We then use a graph model to predict network attacks using edge classification. To explain the prediction results, we… More >

  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    A Novel Unsupervised Structural Attack and Defense for Graph Classification

    Yadong Wang1, Zhiwei Zhang1,*, Pengpeng Qiao2, Ye Yuan1, Guoren Wang1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068590 - 10 November 2025

    Abstract Graph Neural Networks (GNNs) have proven highly effective for graph classification across diverse fields such as social networks, bioinformatics, and finance, due to their capability to learn complex graph structures. However, despite their success, GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy. Existing adversarial attack strategies primarily rely on label information to guide the attacks, which limits their applicability in scenarios where such information is scarce or unavailable. This paper introduces an innovative unsupervised attack method for graph classification, which operates without relying on label information, thereby enhancing its applicability… More >

  • Open Access

    ARTICLE

    Resilient Security Framework for Lottery and Betting Kiosks under Ransomware Attacks

    Sapan Pandya*

    Journal of Cyber Security, Vol.7, pp. 637-651, 2025, DOI:10.32604/jcs.2025.073670 - 24 December 2025

    Abstract Ransomware has evolved from opportunistic malware into a global economic weapon, crippling critical services and extracting billions in illicit revenue. While most research has centered on enterprise networks and healthcare systems, an equally vulnerable frontier is emerging in lottery and betting kiosks—self-service financial Internet of Things (IoT) devices that handle billions of dollars annually. These terminals operate unattended, rely on legacy operating systems, and interact with sensitive transactional data, making them prime ransomware targets. This paper introduces a Resilient Security Framework (RSF) for kiosks under ransomware threat conditions. RSF integrates three defensive layers: (1) prevention… More >

Displaying 11-20 on page 2 of 462. Per Page