Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (673)
  • Open Access

    ARTICLE

    An Efficient Deep Learning-based Content-based Image Retrieval Framework

    M. Sivakumar1,*, N. M. Saravana Kumar2, N. Karthikeyan1

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 683-700, 2022, DOI:10.32604/csse.2022.021459 - 20 April 2022

    Abstract The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology. Image retrieval has become one of the vital tools in image processing applications. Content-Based Image Retrieval (CBIR) has been widely used in varied applications. But, the results produced by the usage of a single image feature are not satisfactory. So, multiple image features are used very often for attaining better results. But, fast and effective searching for relevant images from a database becomes a challenging task. In the previous existing system, the CBIR has used the… More >

  • Open Access

    ARTICLE

    Classification of Multi-Frame Human Motion Using CNN-based Skeleton Extraction

    Hyun Yoo1, Kyungyong Chung2,*

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 1-13, 2022, DOI:10.32604/iasc.2022.024890 - 15 April 2022

    Abstract Human pose estimation has been a major concern in the field of computer vision. The existing method for recognizing human motion based on two-dimensional (2D) images showed a low recognition rate owing to motion depth, interference between objects, and overlapping problems. A convolutional neural network (CNN) based algorithm recently showed improved results in the field of human skeleton detection. In this study, we have combined human skeleton detection and deep neural network (DNN) to classify the motion of the human body. We used the visual geometry group network (VGGNet) CNN for human skeleton detection, and More >

  • Open Access

    ARTICLE

    Crypto Hash Based Malware Detection in IoMT Framework

    R Punithavathi1, K Venkatachalam2, Mehedi Masud3, Mohammed A. AlZain4, Mohamed Abouhawwash5,6,*

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 559-574, 2022, DOI:10.32604/iasc.2022.024715 - 15 April 2022

    Abstract The challenges in providing e-health services with the help of Internet of Medical Things (IoMT) is done by connecting to the smart medical devices. Through IoMT sensor devices/smart devices, physicians share the sensitive information of the patient. However, protecting the patient health care details from malware attack is necessary in this advanced digital scenario. Therefore, it is needed to implement cryptographic algorithm to enhance security, safety, reliability, preventing details from malware attacks and privacy of medical data. Nowadays blockchain has become a prominent technology for storing medical data securely and transmit through IoMT concept. The… More >

  • Open Access

    ARTICLE

    Novel Optimized Framework for Video Processing in IoRT Driven Hospitals

    Mani Deepak Choudhry1,*, B. Aruna Devi2, M. Sundarrajan3

    Intelligent Automation & Soft Computing, Vol.34, No.1, pp. 267-278, 2022, DOI:10.32604/iasc.2022.024024 - 15 April 2022

    Abstract Internet of Remote things (IoRT) has gained recent attention and is considered as one most prominent research topics being carried out by numerous researchers worldwide. IoRT is being used in various applications and this paper mainly concentrates on the healthcare industry wherein it could be used effectively for patient monitoring. IoRT plays a crucial role in monitoring the patients in any healthcare center remotely by allowing simultaneous video transmissions possible from the emergency areas like Intensive Care Unit (ICU). Considering general scenarios, the video transmissions are done by the main use of Gaussian distribution. With… More >

  • Open Access

    ARTICLE

    How Load Aggregators Avoid Risks in Spot Electricity Market: In the Framework of Power Consumption Right Option Contracts

    Jiacheng Yang1, Xiaohe Zhai1, Zhongfu Tan1,2,*, Zhenghao He1

    Energy Engineering, Vol.119, No.3, pp. 883-906, 2022, DOI:10.32604/ee.2022.018033 - 31 March 2022

    Abstract There is uncertainty in the electricity price of spot electricity market, which makes load aggregators undertake price risks for their agent users. In order to allow load aggregators to reduce the spot market price risk, scholars have proposed many solutions, such as improving the declaration decision-making model, signing power mutual insurance contracts, and adding energy storage and mobilizing demand-side resources to respond. In terms of demand side, calling flexible demand-side resources can be considered as a key solution. The user's power consumption rights (PCRs) are core contents of the demand-side resources. However, there have been… More >

  • Open Access

    ARTICLE

    Ransomware Classification Framework Using the Behavioral Performance Visualization of Execution Objects

    Jun-Seob Kim, Ki-Woong Park*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3401-3424, 2022, DOI:10.32604/cmc.2022.026621 - 29 March 2022

    Abstract A ransomware attack that interrupted the operation of Colonial Pipeline (a large U.S. oil pipeline company), showed that security threats by malware have become serious enough to affect industries and social infrastructure rather than individuals alone. The agents and characteristics of attacks should be identified, and appropriate strategies should be established accordingly in order to respond to such attacks. For this purpose, the first task that must be performed is malware classification. Malware creators are well aware of this and apply various concealment and avoidance techniques, making it difficult to classify malware. This study focuses… More >

  • Open Access

    ARTICLE

    Deep Learning Framework for Precipitation Prediction Using Cloud Images

    Mirza Adnan Baig*, Ghulam Ali Mallah, Noor Ahmed Shaikh

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4201-4213, 2022, DOI:10.32604/cmc.2022.026225 - 29 March 2022

    Abstract Precipitation prediction (PP) have become one of the significant research areas of deep learning (DL) and machine vision (MV) techniques are frequently used to predict the weather variables (WV). Since the climate change has left significant impact upon weather variables (WV) and continuously changes are observed in temperature, humidity, cloud patterns and other factors. Although cloud images contain sufficient information to predict the precipitation pattern but due to changes in climate, the complex cloud patterns and rapid shape changing behavior of clouds are difficult to consider for rainfall prediction. Prediction of rainfall would provide more… More >

  • Open Access

    ARTICLE

    An Efficient Intrusion Detection Framework in Software-Defined Networking for Cybersecurity Applications

    Ghalib H. Alshammri1,2, Amani K. Samha3, Ezz El-Din Hemdan4, Mohammed Amoon1,4, Walid El-Shafai5,6,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3529-3548, 2022, DOI:10.32604/cmc.2022.025262 - 29 March 2022

    Abstract Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process. In recent times, the most complex task in Software Defined Network (SDN) is security, which is based on a centralized, programmable controller. Therefore, monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment. Consequently, this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms: K-means, Farthest First, Canopy, Density-based algorithm, and Exception-maximization (EM), using the Waikato Environment for Knowledge Analysis (WEKA) software to compare… More >

  • Open Access

    ARTICLE

    Deep Learning Framework for Classification of Emoji Based Sentiments

    Nighat Parveen Shaikh*, Mumtaz Hussain Mahar

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 3145-3158, 2022, DOI:10.32604/cmc.2022.024843 - 29 March 2022

    Abstract Recent patterns of human sentiments are highly influenced by emoji based sentiments (EBS). Social media users are widely using emoji based sentiments (EBS) in between text messages, tweets and posts. Although tiny pictures of emoji contains sufficient information to be considered for construction of classification model; but due to the wide range of dissimilar, heterogynous and complex patterns of emoji with similar meanings (SM) have become one of the significant research areas of machine vision. This paper proposes an approach to provide meticulous assistance to social media application (SMA) users to classify the EBS sentiments.… More >

  • Open Access

    ARTICLE

    An Integrated Framework for Cloud Service Selection Based on BOM and TOPSIS

    Ahmed M. Mostafa*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4125-4142, 2022, DOI:10.32604/cmc.2022.024676 - 29 March 2022

    Abstract Many businesses have experienced difficulties in selecting a cloud service provider (CSP) due to the rapid advancement of cloud computing services and the proliferation of CSPs. Many independent criteria should be considered when evaluating the services provided by different CSPs. It is a case of multi-criteria decision-making (MCDM). This paper presents an integrated MCDM cloud service selection framework for determining the most appropriate service provider based on the best only method (BOM) and technique for order of preference by similarity to ideal solution (TOPSIS). To obtain the weights of criteria and the relative importance of… More >

Displaying 431-440 on page 44 of 673. Per Page