Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (102)
  • Open Access

    ARTICLE

    Polarized Autologous Macrophages (PAM) Can Be a Tumor Vaccine

    Dongqing Wang1,*, Heying Chen1, Yi Hu2,*

    Oncologie, Vol.24, No.3, pp. 441-449, 2022, DOI:10.32604/oncologie.2022.024898

    Abstract Immunotherapy is currently recognized as one of the most promising anticancer strategies. In the tumor microenvironment, tumor-associated macrophages are mainly M2-type macrophages with tumor-promoting effects. Therefore, the reprogramming of tumor-associated macrophages from M2 to M1 type is a potential strategy for cancer therapy. We have previously shown the anticancer effects of implantable allogeneic M1 macrophages in mice. Here, we further engineered autologous mouse bone marrow cells into M1 macrophages and then embedded them into a sodium alginate gel to prepare an implantable immunotherapeutic agent (M1@Gel). We demonstrate that M1@Gel repolarizes M2 macrophages to M1 type and activates the immune responses… More >

  • Open Access

    REVIEW

    Cellulose Nanofi brils: From Strong Materials to Bioactive Surfaces**

    Yanxia Zhang1, Tiina Nypelö1,*, Carlos Salas1, Julio Arboleda1, Ingrid C. Hoeger1,*, Orlando J. Rojas1,2,*

    Journal of Renewable Materials, Vol.1, No.3, pp. 195-211, 2013, DOI:10.7569/JRM.2013.634115

    Abstract Cellulose nanofi brils (CNF), also known as nanofi brillar cellulose (NFC), are an advanced biomaterial made mainly from renewable forest and agricultural resources that have demonstrated exceptional performance in composites. In addition, they have been utilized in barrier coatings, food, transparent fl exible fi lms and other applications. Research on CNF has advanced rapidly over the last decade and several of the fundamental questions about production and characterization of CNF have been addressed. An interesting shift in focus in the recent reported literature indicates increased efforts aimed at taking advantage of the unique properties of CNF. This includes its nanoscale… More >

  • Open Access

    ARTICLE

    Renewable Resource-Based Hybrid Crosslinker for Sustainable Industrial Coatings

    Dinesh Balgude, Anagha Sabnis*

    Journal of Renewable Materials, Vol.2, No.3, pp. 235-245, 2014, DOI:10.7569/JRM.2014.634115

    Abstract Renewable resource-based hybrid crosslinker was successfully synthesized via sol-gel technology. The synthesis involved malenization of Cashew Nut Shell Liquid (CNSL) followed by its silane modifi cation and subsequent hydrolysis and condensation with tetraethyl orthosilicate (TEOS). The synthesized crosslinker was characterized by spectroscopic analysis (FT-IR, 1 H-NMR, 13C-NMR and 29Si-NMR) for structural elucidation. The crosslinker was further formulated in a conventional stoving system. Fully-cured coatings were obtained after stoving at 120°C for ½ hr and were then evaluated for physical, mechanical, chemical, optical, accelerated weathering, electrochemical and morphological properties. The incorporation of hybrid crosslinker in a conventional stoving system was observed… More >

  • Open Access

    ARTICLE

    Bond Strength of Biodegradable Gelatin-Based Wood Adhesives

    D.N. Dorr, S.D. Frazier, K.M. Hess, L.S. Traeger, W.V. Srubar III*

    Journal of Renewable Materials, Vol.3, No.3, pp. 195-204, 2015, DOI:10.7569/JRM.2015.634108

    Abstract A study of the potential for gelatin-based derivatives to serve as biorenewable, biodegradable adhesives for wood and engineered wood products is presented in this article. The effect of gelatin-to-water weight percent on the mechanical, specifically ultimate breaking (bond) strength, and thermal properties was investigated using tensile testing and differential scanning calorimetry, respectively. The breaking strengths of the gelatin-based adhesives were characterized and compared to four commercially available wood adhesives. The effect of 1–5% tannin addition on the mechanical, thermal, and moisture absorption behavior of the gelatin-based adhesives was also investigated. Results show that the gelatin-based materials demonstrate 1) appropriate thermal… More >

  • Open Access

    ARTICLE

    Mechanical Characterization of Gelatin-Flax Natural-Fiber Composites for Construction

    K. M. Hess, W. V. Srubar III*

    Journal of Renewable Materials, Vol.3, No.3, pp. 175-182, 2015, DOI:10.7569/JRM.2015.634106

    Abstract This article concerns the development and characterization of a protein-based alternative to traditional fiberreinforced polymer (FRP) composites used in construction. In this work, gelatin-based resins were prepared at various gelatin-to-water (g/w) ratios. The effects of g/w ratio and curing time on resin mechanical properties were investigated. Using gelatin resins with a 30% g/w ratio, (i) gelatin-flax and (ii) gelatin-fiberglass composites were fabricated, and their mechanical properties were characterized and compared to both (iii) epoxy-flax and (iv) epoxy-fiberglass composites. Fracture surface morphologies were investigated using scanning electron microscopy. Results indicate that gelatin-flax composites exhibit similar mechanical properties compared to the epoxy-fiberglass… More >

  • Open Access

    ARTICLE

    Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging

    Long Li, Yanan Lu, Yu Chen, Jiayi Bian, Li Wang, Li Li*

    Journal of Renewable Materials, Vol.11, No.1, pp. 291-307, 2023, DOI:10.32604/jrm.2022.021456

    Abstract Silver nanoparticles (Ag NPs) are an effective antibacterial agent, but their application in food packaging is limited due to their easy agglomeration and oxidation. In this study, antibacterial microcapsules were fabricated using Ginkgo biloba essential oil (GBEO) as core material and chitosan and type B gelatin biopolymer as capsule materials. These antibacterial microcapsules were then modified with green-synthesized Ag NPs, blended into the biopolymer polylactic acid (PLA), and finally formed as films. Physicochemical properties and antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were evaluated. Results showed that the prepared antibacterial PLA films exhibited excellent antibacterial… More > Graphic Abstract

    Antibacterial Chitosan-Gelatin Microcapsules Modified with Green-Synthesized Silver Nanoparticles for Food Packaging

  • Open Access

    REVIEW

    A Review of Soy-Tannin Gelling for Resins Applications

    Antonio Pizzi*

    Journal of Renewable Materials, Vol.11, No.1, pp. 1-25, 2023, DOI:10.32604/jrm.2022.023314

    Abstract Soy flour (SF), soy protein and soy protein isolates (SPI) have been the focus of increasing research on their application as new materials for a variety of applications, mainly for wood adhesives and other resins. Tannins too have been the focus of increasing research for similar applications. While both materials are classed as non-toxic and have achieved interesting results the majority of the numerous and rather inventive approaches have still relied on some sort of hardeners or cross-linkers to bring either of them or even their combination to achieve acceptable results. The paper after a presentation of the two materials… More >

  • Open Access

    ARTICLE

    A Fast Tongue Detection and Location Algorithm in Natural Environment

    Lei Zhu1, Guojiang Xin1,2,*, Xin Wang1, Changsong Ding1,2, Hao Liang1,2, Qilei Chen3

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4727-4742, 2022, DOI:10.32604/cmc.2022.028187

    Abstract The collection and extraction of tongue images has always been an important part of intelligent tongue diagnosis. At present, the collection of tongue images generally needs to be completed in a sealed, stable light environment, which is not conducive to the promotion of extensive tongue image and intelligent tongue diagnosis. In response to the problem, a new algorithm named GCYTD (GELU-CA-YOLO Tongue Detection) is proposed to quickly detect and locate the tongue in a natural environment, which can greatly reduce the restriction of the tongue image collection environment. The algorithm is based on the YOLO (You Only Look Once) V4-tiny… More >

  • Open Access

    ARTICLE

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

    Xuechuan Wang1,2, Wenying Zhao1,2, Xugang Dang1,2,*, Yiqing Wang1,2, Huijie Zhang1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2747-2763, 2022, DOI:10.32604/jrm.2022.021555

    Abstract As a non-toxic, highly reactive biomass material, gelatin is wildly used as the component of biomass-based adhesive. However, like most aqueous adhesives, gelatin-based adhesives suffer from long solidifying time or high solidifying temperature due to the low volatility of water, which highly limits the application potential of gelatinbased adhesives. Inspired by the fast adhesion of marine organisms through the formation of chemical crosslinks, herein, a kind of low temperature curable eco-friendly gelatin-based adhesive with good adhesive properties and fast curing at low temperature is developed by introducing clicking chemical Diels-Alder (DA) reaction between blocked waterborne polyurethane (MWPU) and gelatin. The… More > Graphic Abstract

    Bio-Inspired Gelatin-Based Adhesive Modified with Waterborne Polyurethane on Click Chemistry

  • Open Access

    ARTICLE

    Silk Fibroin-Based Hydrogel for Multifunctional Wearable Sensors

    Yiming Zhao1,2, Hongsheng Zhao3, Zhili Wei4, Jie Yuan1, Jie Jian1, Fankai Kong1, Haojiang Xie1, Xingliang Xiong1,2,*

    Journal of Renewable Materials, Vol.10, No.11, pp. 2729-2746, 2022, DOI:10.32604/jrm.2022.019721

    Abstract The flexible wearable sensors with excellent stretchability, high sensitivity and good biocompatibility are signifi- cantly required for continuously physical condition tracking in health management and rehabilitation monitoring. Herein, we present a high-performance wearable sensor. The sensor is prepared with nanocomposite hydrogel by using silk fibroin (SF), polyacrylamide (PAM), polydopamine (PDA) and graphene oxide (GO). It can be used to monitor body motions (including large-scale and small-scale motions) as well as human electrophysiological (ECG) signals with high sensitivity, wide sensing range, and fast response time. Therefore, the proposed sensor is promising in the fields of rehabilitation, motion monitoring and disease diagnosis. More >

Displaying 31-40 on page 4 of 102. Per Page