Home / Journals / SDHM / Online First
Special Issues
  • Open Access

    ARTICLE

    Bending Stiffness of Concrete-Filled Steel Tube and Its Influence on Concrete Placement Timing of Composite Beam-String Structure

    Zhenyu Zhang1, Quan Jin1, Haitao Zhang1, Zhao Liu1, Yuyang Wu2, Longfei Zhang2, Renzhang Yan2,*
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.053190
    Abstract When the upper chord beam of the beam-string structure (BSS) is made of concrete-filled steel tube (CFST), its overall stiffness will change greatly with the construction of concrete placement, which will have an impact on the design of the tensioning plans and selection of control measures for the BSS. In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during construction, the influence of some factors such as height-width ratio, wall thickness of steel tube, elasticity modulus of concrete, and friction coefficient on More >

  • Open Access

    ARTICLE

    Bearing Fault Diagnosis Based on the Markov Transition Field and SE-IShufflenetV2 Model

    Chaozhi Cai*, Tiexin Xu, Jianhua Ren, Yingfang Xue
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.052813
    Abstract A bearing fault diagnosis method based on the Markov transition field (MTF) and SEnet (SE)-IShufflenetV2 model is proposed in this paper due to the problems of complex working conditions, low fault diagnosis accuracy, and poor generalization of rolling bearing. Firstly, MTF is used to encode one-dimensional time series vibration signals and convert them into time-dependent and unique two-dimensional feature images. Then, the generated two-dimensional dataset is fed into the SE-IShufflenetV2 model for training to achieve fault feature extraction and classification. This paper selects the bearing fault datasets from Case Western Reserve University and Paderborn University… More >

  • Open Access

    ARTICLE

    Time-History Dynamic Analysis of Reinforced Soil-Retaining Walls

    Lianhua Ma1, Min Huang1, Linfeng Han2,*
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.051374
    Abstract Given the complexities of reinforced soil materials’ constitutive relationships, this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account. A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language, and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls. The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed, and the dynamic reactions of the two types More >

  • Open Access

    ARTICLE

    Experimental Study on the Axial Compression Performance of Bamboo Scrimber Columns Embedded with Steel Reinforcing Bars

    Xueyan Lin1,#, Mingtao Wu2,#, Guodong Li1,*, Nan Guo3, Lidan Mei1
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.051033
    Abstract In this paper, a new type of bamboo scrimber column embedded with steel bars (rebars) was proposed, and the compression performance was improved by pre-embedding rebars during the preparation of the columns. The effects of the slenderness ratio and the reinforcement ratio on the axial compression performance of reinforced bamboo scrimber columns were studied by axial compression tests on 28 specimens. The results showed that the increase in the slenderness ratio had a significant negative effect on the axial compression performance of the columns. When the slenderness ratio increased from 19.63 to 51.96, the failure… More >

  • Open Access

    REVIEW

    Review of Artificial Neural Networks for Wind Turbine Fatigue Prediction

    Husam AlShannaq, Aly Mousaad Aly*
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.054731
    Abstract Wind turbines have emerged as a prominent renewable energy source globally. Efficient monitoring and detection methods are crucial to enhance their operational effectiveness, particularly in identifying fatigue-related issues. This review focuses on leveraging artificial neural networks (ANNs) for wind turbine monitoring and fatigue detection, aiming to provide a valuable reference for researchers in this domain and related areas. Employing various ANN techniques, including General Regression Neural Network (GRNN), Support Vector Machine (SVM), Cuckoo Search Neural Network (CSNN), Backpropagation Neural Network (BPNN), Particle Swarm Optimization Artificial Neural Network (PSO-ANN), Convolutional Neural Network (CNN), and nonlinear autoregressive… More >

  • Open Access

    ARTICLE

    Discrete Numerical Study on Type II Fracture of Partially Detached Concrete Panels in Cold Region

    Huayi Zhang1, Maobin Song2, Lei Shen1,*, Nizar Faisal Alkayem1, Maosen Cao3
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.052869
    Abstract The concrete panel of earth-rock dams in cold regions tends to crack due to the combination effect of non-uniform foundation settlement, ice expansion loads, and freeze-thaw damage. In this work, simulations are designed to investigate the effects of freeze-thaw damage degrees on the fracture behavior caused by the partial detachment and ice expansion loads on concrete panels. Results show that the range of detached panels and freeze-thaw damage degree are the dominant factors that affect the overall load-bearing capacity of the panel and the failure cracking modes, whereas the panel slope is a secondary factor. More >

  • Open Access

    ARTICLE

    Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages

    Giada Faraco, Andrea Vincenzo De Nunzio, Nicola Ivan Giannoccaro*, Arcangelo Messina
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.052663
    Abstract The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring, such as that carried out by a series of accelerometers placed on the structure, is certainly a goal of extreme and current interest. In the present work, the results obtained from the processing of experimental data of a real structure are shown. The analyzed structure is a lattice structure approximately 9 m high, monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels. The data used refer to continuous monitoring that lasted for a total of 1… More >

  • Open Access

    ARTICLE

    Simulation and Traffic Safety Analysis of Heavy-Haul Railway Train-Bridge Coupling System under Earthquake Action

    Liangwei Jiang1,2, Wei Zhang2, Hongyin Yang1,2,3,*, Xiucheng Zhang1, Jinghan Wu2, Zhangjun Liu2
    Structural Durability & Health Monitoring, DOI:10.32604/sdhm.2024.051125
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract Aiming at the problem that it is difficult to obtain the explicit expression of the structural matrix in the traditional train-bridge coupling vibration analysis, a combined simulation system of train-bridge coupling system (TBCS) under earthquake (MAETB) is developed based on the cooperative work of MATLAB and ANSYS. The simulation system is used to analyze the dynamic parameters of the TBCS of a prestressed concrete continuous rigid frame bridge benchmark model of a heavy-haul railway. The influence of different driving speeds, seismic wave intensities, and traveling wave effects on the dynamic response of the TBCS under More >