Open Access
ARTICLE
Chenhong Li1, Guojin Han1, Hua Zhong1, Chao Zhang1, Rui Zhang2, Jonggeun Choe3, Chen Xing2, Xuewen Cao2, Jiang Bian4,*
Energy Engineering, DOI:10.32604/ee.2025.060970
(This article belongs to the Special Issue: Integrated Geology-Engineering Simulation and Optimizationfor Unconventional Oil and Gas Reservoirs)
Abstract Extracted natural gas hydrate is a multi-phase and multi-component mixture, and its complex composition poses significant challenges for transmission and transportation, including phase changes following extraction and sediment deposition within the pipeline. This study examines the flow and heat transfer characteristics of hydrates in a riser, focusing on the multi-phase flow behavior of natural gas hydrate in the development riser. Additionally, the effects of hydrate flow and seawater temperature on heat exchange are analyzed by simulating the ambient temperature conditions of the South China Sea. The findings reveal that the increase in unit pressure drop… More >
Open Access
ARTICLE
Haoyuan Li, Lingling Li*
Energy Engineering, DOI:10.32604/ee.2025.060105
Abstract Rational distribution network planning optimizes power flow distribution, reduces grid stress, enhances voltage quality, promotes renewable energy utilization, and reduces costs. This study establishes a distribution network planning model incorporating distributed wind turbines (DWT), distributed photovoltaics (DPV), and energy storage systems (ESS). K-means++ is employed to partition the distribution network based on electrical distance. Considering the spatiotemporal correlation of distributed generation (DG) outputs in the same region, a joint output model of DWT and DPV is developed using the Frank-Copula. Due to the model’s high dimensionality, multiple constraints, and mixed-integer characteristics, bilevel programming theory is… More >
Open Access
ARTICLE
Weiping Ouyang1,2, Luoyi Huang3,*, Jinghua Liu3,*, Hongzhong Zhang1,2
Energy Engineering, DOI:10.32604/ee.2025.061171
(This article belongs to the Special Issue: Integrated Geology-Engineering Simulation and Optimizationfor Unconventional Oil and Gas Reservoirs)
Abstract Hydraulic fracturing is a crucial technique for efficient development of coal reservoirs. Coal rocks typically contain a high density of natural fractures, which serve as conduits for fracturing fluid. Upon injection, the fluid infiltrates these natural fractures and leaks out, resulting in complex fracture morphology. The prediction of hydraulic fracture network propagation for coal reservoirs has important practical significance for evaluating hydraulic fracturing. This study proposes a novel inversion method for predicting fracture networks in coal reservoirs, explicitly considering the distribution of natural fractures. The method incorporates three distinct natural fracture opening modes and employs… More >
Open Access
ARTICLE
Baxter L. M. Williams1,*, Henri Croft1, James Hunt1, Josh Viloria1, Nathan Sherman1, James Oliver1, Brody Green1, Alexey Turchin2, Juan B. García Martínez2, Joshua M. Pearce3,4, David Denkenberger1,2,*
Energy Engineering, DOI:10.32604/ee.2025.063276
Abstract Following global catastrophic infrastructure loss (GCIL), traditional electricity networks would be damaged and unavailable for energy supply, necessitating alternative solutions to sustain critical services. These alternative solutions would need to run without damaged infrastructure and would likely need to be located at the point of use, such as decentralized electricity generation from wood gas. This study explores the feasibility of using modified light duty vehicles to self-sustain electricity generation by producing wood chips for wood gasification. A 2004 Ford Falcon Fairmont was modified to power a woodchipper and an electrical generator. The vehicle successfully produced… More >
Open Access
ARTICLE
Hayder A. Dhahad1, Miqdam T. Chaichan2,*, Mohammed A. Fayad2, Hasanain A. Abdul Wahhab3, T. Magrites4
Energy Engineering, DOI:10.32604/ee.2025.061617
(This article belongs to the Special Issue: Advancements in Energy Resources, Processes, Systems, and Materials-(ICSSD2024))
Abstract One of the most important of these emissions is fine particulate matter, which is a harmful emission of diesel engines, leading to the imposition of strict regulations. Biodiesel, with its high oxygen content, is an effective alternative to significantly reduce these emissions. In this study, rapeseed methyl ester (RME) was used as a diesel engine fuel and the emitted particulate matter was compared with ultra-low sulfur diesel (ULSD). In most experimental studies, the emission of soot was measured. In this work, the effects of injection timing, injection pressure (IP), and engine load on fine particulate… More >
Open Access
ARTICLE
Lei Shen1,2, Chutong Zhang2, Yuwei Ge1, Shanyun Gu1, Qiang Gao1, Wei Li1, Jie Ji2,*
Energy Engineering, DOI:10.32604/ee.2025.061010
Abstract The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis. This paper presents an innovative framework, the Intelligent Power Stability and Scheduling (IPSS) System, which is designed to enhance the safety, stability, and economic efficiency of power systems, particularly those integrated with green energy sources. The IPSS System is distinguished by its integration of a CNN-Transformer predictive model, which leverages the strengths of Convolutional Neural Networks (CNN) for local feature extraction and Transformer architecture for global dependency modeling, offering significant… More >
Open Access
ARTICLE
Diju Gao, Shuai Li*
Energy Engineering, DOI:10.32604/ee.2025.062101
(This article belongs to the Special Issue: Machine Learning in Energy Optimization for New Energy Solutions)
Abstract To safeguard the ocean ecosystem, fuel cells are excellent candidates as the primary energy supply for marine vessels due to their high efficiency, low noise, and cleanliness. However, fuel cells in hybrid power systems are highly susceptible to load transients, which can severely damage fuel cells and shorten their lifespan. Therefore, the formulation of energy management strategies accounting for power degradation is crucial and urgent. In this study, an improved strategy for equivalent consumption minimization strategy (ECMS) considering power degradation is proposed. The improved energy control strategy effectively controls the energy distribution of hydrogen fuel… More >
Open Access
ARTICLE
Hussain H. Al-Kayiem1,*, Raed A. Jessam2, Sinan S. Hamdi3, Ali M. Tukkee4,5
Energy Engineering, DOI:10.32604/ee.2025.061709
(This article belongs to the Special Issue: Advancements in Energy Resources, Processes, Systems, and Materials-(ICSSD2024))
Abstract Size reduction of the gas turbines (GT) by reducing the inlet S-shaped diffuser length increases the power-to-weight ratio. It improves the techno-economic features of the GT by lesser fuel consumption. However, this Length reduction of a bare S-shaped diffuser to an aggressive S-shaped diffuser would risk flow separation and performance reduction of the diffuser and the air intake of the GT. The objective of this research is to propose and assess fitted energy promoters (EPs) to enhance the S-shaped diffuser performance by controlling and modifying the flow in the high bending zone of the diffuser.… More >