Multiphase Flow Theory in Oil and Gas Gathering and Transportation Process

Submission Deadline: 30 June 2023 Submit to Special Issue

Guest Editors

Jiang Bian, bj@s.upc.edu.cn, China University of Petroleum (East China), China.
Lin Teng, tenglin@fzu.edu.cn, Fuzhou University, China.
Jiaqi Luo, luo.998@osu.edu, The Ohio State University, Columbus, United States.
Xinyue Duan, duanxy@upc.edu.cn, China University of Petroleum (East China), China.

Summary

Multiphase flow theory is widely used in the field of oil and gas exploitation and transportation engineering, especially in the surface gathering and transportation system. Multiphase pipeline,  refers to the pipeline that transports the mixture of oil, gas and water (sometimes with solid impurities such as mud and sand) produced by one or more oil (gas) wells, is widely used. In addition to all the characteristics of a two-phase mixing pipeline, it also has the following features: 1. It will hasten the deterioration of the pipeline's inner wall. 2. The light components in water and natural gas may form hydrate and obstruct the pipeline under high pressure and low temperature. To prevent hydrate formation in multiphase mixed transmission pipelines, solvents such as methanol or ethylene glycol are frequently introduced into the fluid. Many academics have spent a lot of time and money researching mixed transportation technology and related equipment up to now. The purpose of this special issue is to collect the latest achievements in the research and application of multiphase flow theory in oil and gas gathering and transportation process. Potential topics include but are not limited to:

 

· Thermophysical properties of multiphase flow

· Mathematical model of multiphase flow

· Process calculation method of multiphase mixed transmission pipeline

· Multiphase flow measurement and testing technology

· Analysis of multiphase flow in gas-liquid-solid pipeline

· Common equipment and automation technology in multiphase pipeline

· Multiphase flow erosion and corrosion

· Control of severe slug flow in multiphase riser

· Diagnosis and control of multiphase flow thermophysical processes

· Hydrate formation and flow guarantee

· Leakage and detection of multiphase pipeline

· Heat transfer issues in Natural gas liquefaction

· Multiphase flow in oil and gas treatment unit

· Multiphase flow in carbon dioxide and hydrogen pipeline


Keywords

Oil and gas; Multiphase flow; Pipeline; Gathering and transportation; Erosion and corrosion; Flow guarantee

Published Papers


  • Open Access

    ARTICLE

    Title Supersonic Condensation and Separation Characteristics of CO2-Rich Natural Gas under Different Pressures

    Yong Zheng, Lei Zhao, Yujiang Wang, Feng Chang, Weijia Dong, Xinying Liu, Yunfei Li, Xiaohan Zhang, Ziyuan Zhao
    Energy Engineering, Vol.120, No.2, pp. 529-540, 2023, DOI:10.32604/ee.2023.022765
    (This article belongs to this Special Issue: Multiphase Flow Theory in Oil and Gas Gathering and Transportation Process)
    Abstract Supersonic separation technology is a new natural gas sweetening method for the treatment of natural gas with high CO2 (carbon dioxide) content. The structures of the Laval nozzle and the supersonic separator were designed, and the mathematical models of supersonic condensation and swirling separation for CO2-CH4 mixture gas were established. The supersonic condensation characteristics of CO2 in natural gas and the separation characteristics of condensed droplets under different inlet pressures were studied. The results show that higher inlet pressure results in a larger droplet radius and higher liquid phase mass fraction; additionally, the influence of centrifugal force is more pronounced,… More >

Share Link

WeChat scan