Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (43)
  • Open Access

    REVIEW

    A Review of Phenolic Compounds: From Biosynthesis and Ecological Roles to Human Health and Nutrition

    Lucija Galić, Zdenko Lončarić, Miroslav Lisjak*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3297-3318, 2025, DOI:10.32604/phyton.2025.072504 - 01 December 2025

    Abstract Phenolic compounds represent a broad and structurally diverse class of plant secondary metabolites with importance for both plant biology and human health. This review provides a comprehensive overview of their biosynthesis, chemical diversity, multifaceted functions in plants, roles in the wider ecosystem, and significance in human nutrition and biotechnology. Primarily synthesized via the phenylpropanoid pathway, these compounds encompass major classes such as lignin, flavonoids, and tannins. Within the plant, they perform critical functions including providing structural support (lignin), defending against biotic stresses (e.g., pathogens, herbivores), mediating ecological interactions (pollination, symbiosis, allelopathy), and protecting against abiotic… More >

  • Open Access

    REVIEW

    Traditional Uses, Polysaccharide Pharmacology, and Active Components Biosynthesis Regulation of Dendrobium officinale: A Review

    Ruikang Ma1,2, Ziying Huang1, Zexiu Zhang3, Ruohui Lu4, Menghan Li1, Zhiyi Luo3, Mengni Li5, Pengyue Zhang3, Xiaohong Lin3, Guozhuang Zhang1,*, Linlin Dong1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.11, pp. 3721-3748, 2025, DOI:10.32604/phyton.2025.072062 - 01 December 2025

    Abstract Dendrobium officinale (DO) is a well-recognized medicinal and edible plant with a long history of application in traditional medicinal practices across China and Southeast Asia. Recent studies have demonstrated that DO is abundant in diverse bioactive compounds, including polysaccharides (DOP), flavonoids, alkaloids, and bibenzyls thought to exert a range of pharmacological effects, such as anti-tumor and immunomodulatory effects. However, our comprehensive understanding of two key aspects—pharmacological functions and biosynthetic mechanisms—of DO’s major constituents remains limited, especially when considered within the clinical contexts of traditional use. To address this gap, this study reviews DO’s historical applications, clinical effects, and… More > Graphic Abstract

    Traditional Uses, Polysaccharide Pharmacology, and Active Components Biosynthesis Regulation of <i>Dendrobium officinale</i>: A Review

  • Open Access

    REVIEW

    Melatonin Biosynthesis, Growth Regulation, and Adaptability to Environmental Stress in Plants

    Xiaomei He1, Xiaoting Wan1, Muhammad Arif 2, Ziyang Hu1, Haiyu Wang1, Muhammad Aamir Manzoor3,*, Cheng Song1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.10, pp. 2985-3002, 2025, DOI:10.32604/phyton.2025.070697 - 29 October 2025

    Abstract Melatonin is a multifunctional molecule found in all organisms that has been shown to play a crucial role in plant growth, development, and stress response. Plant melatonin is typically synthesized in organelles termed chloroplasts, and the mechanisms of its synthesis and metabolic pathways have been extensively studied. Melatonin serves a significant regulatory function in plant growth and development, influencing the morphological and physiological characteristics of plants by modulating biological processes. While studies on plant melatonin receptors are in their early stages compared to studies in animal receptors, the binding mechanism with melatonin is now recognized… More >

  • Open Access

    ARTICLE

    Comparative Transcriptomic Analysis of a Naturally Found Yellowish Leaf Rehmannia chingii H. L. Li Mutant and Wild Type

    Lina Song1, Caijie Yi1, Shiwei Zhao1, Yuxin Peng1, Zijing Li1, Yuqiang Zhang 2, Hua Zhang1, Helan Qin1, Huali Zhang1,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.8, pp. 2593-2613, 2025, DOI:10.32604/phyton.2025.068133 - 29 August 2025

    Abstract Naturally occurring yellow leaf mutants are an important resource for studying pigment content and biosynthesis, as well as related gene expression. In our ongoing cultivation of Rehmannia chingii H. L. Li, we found an off-type yellow plant. The yellowing started with the new leaves and gradually spread downward until the entire plant exhibited a stable shade of yellow. We studied the differences in the chlorophyll and carotenoid content, carotenoid profile, and transcriptome of this yellow-leaf mutant (P2). Compared to the wild-type R. chingii plant (P1), P2 leaves had significantly lower chlorophyll and carotenoid content. LC-MS/MS analysis revealed More >

  • Open Access

    ARTICLE

    Study of Biosynthesis and Biodegradation by Microorganisms from Plastic-Contaminated Soil of Polyhydroxybutyrate Based Composites

    Tetyana Pokynbroda1, Ihor Semeniuk1,2, Agnieszka Gąszczak3, Elbieta Szczyrba3, Nataliya Semenyuk2, Volodymyr Skorokhoda2, Serhiy Pyshyev4,*

    Journal of Renewable Materials, Vol.13, No.7, pp. 1439-1458, 2025, DOI:10.32604/jrm.2025.02025-0030 - 22 July 2025

    Abstract The selection of carbon sources and the biosynthesis of polyhydroxybutyrate (PHB) by the Azotobacter vinelandii N-15 strain using renewable raw materials were investigated. Among the tested substrates (starch, sucrose, molasses, bran), molasses as the carbon source yielded the highest PHB production. The maximum polymer yield (26% of dry biomass) was achieved at a molasses concentration of 40 g/L. PHB formation was confirmed via thin-layer chromatography, gas chromatography and Fourier transform infrared spectroscopy. Composite films based on PHB, polylactic acid (PLA), and their blends were fabricated using the solvent casting. The biodegradation of these films was studied More > Graphic Abstract

    Study of Biosynthesis and Biodegradation by Microorganisms from Plastic-Contaminated Soil of Polyhydroxybutyrate Based Composites

  • Open Access

    ARTICLE

    Metabolomic and Transcriptomic Insights into Enhanced Paclitaxel Biosynthesis in Cultivated Taxus cuspidata

    Dandan Wang*, Jiaxin Chen, Yanwen Zhang

    Phyton-International Journal of Experimental Botany, Vol.94, No.4, pp. 1137-1158, 2025, DOI:10.32604/phyton.2025.063894 - 30 April 2025

    Abstract Taxus cuspidata, a rare species of the Taxus genus, and its wild resources are under severe threat. The development of cultivated species has become an important strategy to replace wild species. The objective of this work was to elucidate the differences in secondary metabolite accumulation, particularly in the paclitaxel biosynthesis pathway, between wild and cultivated species. This study employed liquid chromatography-tandem mass spectrometry (LC-MS/MS) and RNA sequencing (RNA-Seq) technologies to conduct integrated metabolomic and transcriptomic analyses of wild and cultivated species of T. cuspidata. The results showed that the content of paclitaxel in cultivated species was significantly higher… More >

  • Open Access

    ARTICLE

    HuLBD1 Promotes Flavonoid Biosynthesis Involved in Senescence of Hylocereus undatus by Negatively Regulating HuCHS

    Xinxin Chen1, Fuxin Li1, Jingyu Jia1, Yajing Tian1, Xin Li1,2,3,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.3, pp. 825-842, 2025, DOI:10.32604/phyton.2025.062015 - 31 March 2025

    Abstract In plants, transcription factor (TF) family LATERAL ORGAN BOUNDARIES DOMAIN (LBD) has been identified to be involved in the ripening and senescence processes of fruits. However, the function of LBD in Hylocereus undatus (Haw.) Britton & Rose (H. undatus) has not been reported yet. Through transcriptomic analysis, virus-induced gene silencing (VIGS) technology, and RT-qPCR validation, we investigated the role of the LBD TFs in the senescence of H. undatus. Transcriptomic analysis revealed that HuLBD1 is a key transcription factor of the LBD family regulating H. undatus senescence. After silencing HuLBD1, 5075 differentially expressed genes (DEGs) were identified. GSEA results showed… More >

  • Open Access

    ARTICLE

    From Waste to Biopolymer: Synthesis of P(3HB-co-4HB) from Renewable Fish Oil

    Tatiana Volova1,2, Natalia Zhila1,2,*, Kristina Sapozhnikova1,2, Olga Menshikova1,2, Evgeniy Kiselev1,2, Alexey Sukovatyi1,2, Vladimir Volkov3, Ivan Peterson4, Natalia Ipatova1,2, Ekaterina Shishatskaya1,2

    Journal of Renewable Materials, Vol.13, No.3, pp. 413-432, 2025, DOI:10.32604/jrm.2024.058775 - 20 March 2025

    Abstract The article presents the results of a study on the possibility of synthesizing biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from renewable waste fish oil (WFO) by the Cupriavidus necator B-10646 bacterium. For the first time, waste oil generated during the processing of Sprattus balticus in the production of sprats was used as the main carbon substrate for the synthesis of P(3HB-co-4HB), and ε-caprolactone was used as a precursor instead of the more expensive γ-butyrolactone. Samples of P(3HB-co-4HB) with a 4HB monomer content from 7.4 to 11.6 mol.% were synthesized, and values of the bacterial biomass yield and the total yield of the… More > Graphic Abstract

    From Waste to Biopolymer: Synthesis of P(3HB-<i>co</i>-4HB) from Renewable Fish Oil

  • Open Access

    ARTICLE

    Transcriptome Analysis of Derris fordii and Derris elliptica to Identify Potential Genes Involved in Rotenoid Biosynthesis

    Yanlin Pan1, Yibin Zhang1, Xingui Wang1, Hongbo Qin1, Lunfa Guo1,2,*

    Phyton-International Journal of Experimental Botany, Vol.94, No.1, pp. 123-136, 2025, DOI:10.32604/phyton.2025.059598 - 24 January 2025

    Abstract Derris fordii and Derris elliptica belong to the Derris genus of the Fabaceae family, distinguished by their high isoflavonoid content, particularly rotenoids, which hold significance in pharmaceuticals and agriculture. Rotenone, as a prominent rotenoid, has a longstanding history of use in pesticides, veterinary applications, medicine, and medical research. The accumulation of rotenoids within Derris plants adheres to species-specific and tissue-specific patterns and is also influenced by environmental factors. Current research predominantly addresses extraction techniques, pharmacological applications, and pesticide formulations, whereas investigations into the biosynthesis pathway and regulatory mechanism of rotenoids remain relatively scarce. In this study, we… More >

  • Open Access

    ARTICLE

    Genome-Wide Identification of the MYB Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

    Dongxue Su1, Jiarui Zheng1, Yuwei Yi1, Shuyuan Zhang1, Luxin Feng1, Danzeng Quzhen2, De Qiong3, Weiwei Zhang1, Qijian Wang1, Feng Xu1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.9, pp. 2317-2337, 2024, DOI:10.32604/phyton.2024.055350 - 30 September 2024

    Abstract The multifaceted roles of MYB transcriptional regulators are pivotal in orchestrating the complex processes of secondary metabolism, stress tolerance mechanisms, and life cycle progression and development. This study extensively examined the JrMYB genes using whole genome and transcriptomic data, focusing on identifying putative MYB genes associated with fatty acid metabolism. 126 MYB genes were identified within the walnut genome, characterized by hydrophilic proteins spanning lengths ranging from 78 to 1890 base pairs. Analysis of cis-acting elements within the promoter regions of MYB genes revealed many elements linked to cell development, environmental stress, and phytohormones. Transcriptomic data was utilized… More > Graphic Abstract

    Genome-Wide Identification of the <i>MYB</i> Gene Family and Screening of Potential Genes Involved in Fatty Acid Biosynthesis in Walnut

Displaying 1-10 on page 1 of 43. Per Page