Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (639)
  • Open Access

    ARTICLE

    Numerical Solution of Nonlinear Exterior Wave Problems Using Local Absorbing Boundary Conditions

    Igor Patlashenko1, Dan Givoli2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.2, pp. 61-70, 2000, DOI:10.3970/cmes.2000.001.221

    Abstract The method of Absorbing Boundary Conditions (ABCs) is considered for the numerical solution of a class of nonlinear exterior wave scattering problems. Recently, a scheme based on the exact nonlocal Dirichlet-to-Neumann (DtN) ABC has been proposed for such problems. Although this method is very accurate, it is also highly expensive computationally. In this paper, the nonlocal ABC is replaced by a low-order local ABC, which is obtained by localizing the DtN condition in a certain "optimal'' way. The performance of the new local scheme is compared to that of the nonlocal scheme via numerical experiments in two dimensions. More >

  • Open Access

    ARTICLE

    Numerical Simulation of Fatigue Crack Growth in Microelectronics Solder Joints

    K. Kaminishi1, M. Iino2, H. Bessho2, M. Taneda3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 107-110, 2000, DOI:10.3970/cmes.2000.001.107

    Abstract An FEA (finite element analysis) program employing a new scheme for crack growth analysis is developed and a prediction method for crack growth life is proposed. The FEA program consists of the subroutines for the automatic element re-generation using the Delaunay Triangulation technique, the element configuration in the near-tip region being provided by a super-element, elasto-inelastic stress analyses, prediction of crack extension path and calculation of fatigue life. The FEA results show that crack extension rate and path are controlled by a maximum opening stress range, Δσθmax, at a small radial distance of r = d, where d is chosen… More >

  • Open Access

    ARTICLE

    Cracking of GSO Single Crystal Induced by Thermal Stress

    N. Miyazaki1, T. Tamura2, K. Yamamoto1

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 99-106, 2000, DOI:10.3970/cmes.2000.001.099

    Abstract Quantitative estimation of the failure of a gadolinium orthosilicate (Gd2SiO5, hereafter abbreviated as GSO) single crystal induced by thermal stress was investigated. A GSO cylindrical test specimen was heated in a silicone oil bath, then subjected to large thermal stress by room temperature silicone oil. Cracking occurred during cooling. The transient heat conduction analysis was performed to obtain temperature distribution in the test specimen at the time of cracking, using the surface temperatures measured in the test. Then the thermal stress was calculated using the temperature profile of the test specimen obtained from the heat conduction analysis. It is found… More >

  • Open Access

    ARTICLE

    Modelling and Validation of Contribions to Stress in the Shallow Trench Isolation Process Sequence

    K. Garikipati1, V.S. Rao2, M.Y. Hao3, E. Ibok4, I. de Wolf5, R. W. Dutton6

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 65-84, 2000, DOI:10.3970/cmes.2000.001.065

    Abstract This work is based upon a careful rendering of mechanics and mathematics to describe the phenomena that influence the stress engendered by the Shallow Trench Isolation process. The diffusion-reaction problem is posed in terms of fundamental mass balance laws. Finite strain kinematics is invoked to model the large expansion of SiO2, dielectrics are modelled as viscoelastic solids and annealing-induced density relaxation of SiO2 is incorporated as a history-dependent process. A levelset framework is used to describe the moving Si/SiO2 interface. Sophisticated finite element methods are employed to solve the mathematical equations posed for each phenomenon. These include the incorporation of… More >

  • Open Access

    ARTICLE

    Accurate Modelling and Simulation of Thermomechanical Microsystem Dynamics

    S. Taschini1, J. Müller2, A. Greiner2, M. Emmenegger1, H. Baltes1, J.G. Korvink2

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 31-44, 2000, DOI:10.3970/cmes.2000.001.031

    Abstract We present three techniques to accurately model the thermomechanical response of microsystem components: a new, accurate and stable Kirchhoff-Love multi-layered plate model implemented as an Argyris finite element, a model for the amplitude fluctuations of vibrational modes in micro-mechanical structures within a gaseous environment, and the consistent refinement of a finite element mesh in order to maximize the computational accuracy for a given mesh size. We have implemented these techniques in our in-house MEMS finite element program and accompanying Monte Carlo simulator. We demonstrate our approach to dynamic modeling by computing the thermomechanical response of a CMOS AFM beam. More >

  • Open Access

    ARTICLE

    Modeling of the Electronic Properties of Vertical Quantum Dots by the Finite Element Method

    Philippe Matagne1, Jean-Pierre Leburton2, Jacques Destine, Guy Cantraine3

    CMES-Computer Modeling in Engineering & Sciences, Vol.1, No.1, pp. 1-10, 2000, DOI:10.3970/cmes.2000.001.001

    Abstract We investigate the quantum mechanical properties and single-electron charging effects in vertical semiconductor quantum dots by solving the Schrödinger and Poisson (SP) equations, self-consistently. We use the finite element method (FEM), specifically the Bubnov-Galerkin technique to discretize the SP equations. Owing to the cylindrical symmetry of the structure, the mesh is generated from hexahedral volume elements. The fine details of the electron spectrum and wavefunctions in the quantum dot are obtained as a function of macroscopic parameters such as the gate voltage, device geometry and doping level. The simulations provide comprehensive data for the analysis of the experimental data of… More >

  • Open Access

    ARTICLE

    Primary and Secondary Flows on Unsteady MHD Free Convective Micropolar Fluid Flow Past an Inclined Plate in a Rotating System: a Finite Element Analysis

    M. D. Shamshuddin1, *, P. V. Satya Narayana2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 57-86, 2018, DOI:10.3970/fdmp.2018.014.057

    Abstract In the present paper, a numerical analysis is performed to study the primary and secondary flows of a micropolar fluid flow past an inclined plate with viscous dissipation and thermal radiation in a rotating frame. A uniform magnetic field of strength Bo is applied normal to the plane of the plate. The whole system rotates with uniform angular velocity about an axis normal to the plate. The governing partial differential equations are transformed into coupled nonlinear partial differential equations by using the appropriate dimensionless quantities. The resulting equations are then solved by the Galerkin finite element method. The influencing pertinent… More >

  • Open Access

    ARTICLE

    Finite Element Analysis of Elastohydrodynamic Cylindrical Journal Bearing

    L. Dammak, E. Hadj-Taïeb

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 419-430, 2010, DOI:10.3970/fdmp.2010.006.419

    Abstract This paper presents a short and focused analysis of the pressure development inside the fluid film related to a journal bearing (i.e. the pressure distribution in the the gap between the shaft, generally referred to as the "journal", and the bearing). The related flow is considered to be isotherm, laminar, steady and incompressible. The lubricant is assumed to be an isoviscous fluid. The Reynolds equation governing the lubricant pressure is derived from the coupled continuity and momentum balance equations written in the framework of the Stokes theory. The non linear system given by coupled equations for fluid pressure development (the… More >

  • Open Access

    ARTICLE

    Electromagnetic DC Pump of Liquid Aluminium: Computer Simulation and Experimental Study

    Nedeltcho K,ev1, Val Kagan2, Ahmed Daoud1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.3, pp. 291-318, 2010, DOI:10.3970/fdmp.2010.006.291

    Abstract Results are presented of 3D numerical magneto-hydrodynamic (MHD) simulation of electromagnetic DC pump for both laminar and turbulent metal flow under an externally imposed strongly non-uniform magnetic field. Numerous MHD flow cases were simulated using finite element method and the results of five typical examples are summarized here, including one example of laminar brake flow, one example of turbulent brake flow and three examples of turbulent pumping conditions. These simulations of laminar and turbulent channel flow of liquid metal correctly represent the formation of an M shaped velocity profile and are in good agreement with the results of recently published… More >

  • Open Access

    ARTICLE

    A Finite Element Investigation of Elastic Flow Asymmetries in Cross-Slot Geometries Using a Direct Steady Solver

    A. Filali1, L. Khezzar1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 307-329, 2013, DOI:10.3970/fdmp.2013.009.307

    Abstract Numerical investigations of purely-elastic instabilities occurring in creeping flows are reported in planar cross-slot geometries with both sharp and round corners. The fluid is described by the upper-convected Maxwell model, and the governing equations are solved using the finite element technique based on a steady (non-iterative) direct solver implemented in the POLYFLOWcommercial software (version 14.0). Specifically, extensive simulations were carried out on different meshes, with and without the use of flow perturbations, for a wide range of rheological parameters. Such simulations show the onset of flow asymmetries above a critical Deborah number (De). The effect of rounding the corners is… More >

Displaying 561-570 on page 57 of 639. Per Page