Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (262)
  • Open Access

    ARTICLE

    Light Promotes Protein Stability of Auxin Response Factor 7

    Shucai Wang*

    Phyton-International Journal of Experimental Botany, Vol.92, No.4, pp. 1153-1160, 2023, DOI:10.32604/phyton.2023.026355

    Abstract Light is an environmental signaling, whereas Aux/IAA proteins and Auxin Response Factors (ARFs) are regulators of auxin signalling. Aux/IAA proteins are unstable, and their degradation dependents on 26S ubiquitin-proteasome and is promoted by Auxin. Auxin binds directly to a SCF-type ubiquitin-protein ligase, TIR1, facilitates the interaction between Aux/IAA proteins and TIR1, and then the degradation of Aux/IAA proteins. A few studies have reported that some ARFs are also unstable proteins, and their degradation is also mediated by 26S proteasome. In this study, by using of antibodies recognizing endogenous ARF7 proteins, we found that protein stability of ARF7 was affected by… More >

  • Open Access

    REVIEW

    Research progress of protein phosphatase 2A in cellular autophagy

    HONGMEI WU#, DI LI#, YUANYUAN HUANG, RUYUAN LIU, XIAONIAN ZHU*

    BIOCELL, Vol.47, No.3, pp. 485-491, 2023, DOI:10.32604/biocell.2023.026049

    Abstract Autophagy is an important metabolic process. It facilitates the recycling of intracellular substances by removing, degrading, and recycling damaged organelles, proteins, and lipids in lysosomal vacuoles and plays an important role in maintaining cellular homeostasis. Protein phosphatase 2A (PP2A) is a key serine/threonine phosphatase and one of the main cell cycle regulatory enzymes. As PP2A activity is essential for the cell, dysfunction or dysregulation of PP2A can affect various physiological processes, including autophagy. Here, we review the autophagy-related factors that target PP2A in different diseases, such as breast cancer, colorectal cancer, liver cancer, and Alzheimer’s disease, to maintain cell homeostasis… More >

  • Open Access

    REVIEW

    Research progress of TRIMs protein family in tumors

    YUANYUAN HUANG#, HONGMEI WU#, RUYUAN LIU, SONG JIN, WEILAI XIANG, CHANG YANG, LI XU, XIAONIAN ZHU*

    BIOCELL, Vol.47, No.3, pp. 445-454, 2023, DOI:10.32604/biocell.2023.025880

    Abstract The tripartite motif (TRIMs) protein family has E3 ubiquitin ligase activity among most of its members. They participate in multiple cellular processes and signaling pathways in living organisms, including cell cycle, growth, and metabolism, and mediate chromatin modification, transcriptional regulation, post-translational modification, and cellular autophagy. Previous studies have confirmed that the TRIMs protein family is involved in the development of various cancers and correlated with the prognosis of tumor patients. Here we summarize the biological roles of the TRIMs protein family in cancers. More >

  • Open Access

    ARTICLE

    Research on Clinical Effectiveness of Aspirin for Treating Breast Cancer and Cell Protein Biomarkers on Aspirin Treatment in Drug-Resistant Estrogen Receptor-Positive Breast Cancer Cells

    Junwei Cui1, Minghua Li2, Ruifang Pang2,*, Yinhua Liu1,*

    Oncologie, Vol.24, No.4, pp. 743-768, 2022, DOI:10.32604/oncologie.2022.025419

    Abstract Background: Aspirin (ASA) has been reported to have an antitumor effect but the role of ASA in the prevention and treatment of breast cancer (BC) is still controversial. This study aimed to identify clinical effectiveness of ASA in the treatment of BC and explore the antitumor target proteins of ASA that may be involved in overcoming tamoxifen resistance in estrogen receptor (ER)-positive BC cells. Materials and Methods: Randomized controlled trials (RCTs) of ASA in the treatment of BC were queried from the databases, including PubMed, Web of Science, Cochrane Library, WanFang, and Chinese National Knowledge Infrastructure. According to the quality… More >

  • Open Access

    ARTICLE

    Global and Comparative Proteome Analysis of Nitrogen-Stress Responsive Proteins in the Root, Stem and Leaf of Brassica napus

    Liang Chai1,2, Cheng Cui1, Benchuan Zheng1, Jinfang Zhang1, Jun Jiang1, Haojie Li1,2,*, Liangcai Jiang1,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.3, pp. 645-663, 2023, DOI:10.32604/phyton.2023.024717

    Abstract Nitrogen (N) is one of the basic nutrients and signals for plant development and deficiency of it would always limit the productions of crops in the field. Quantitative research on expression of N-stress responsive proteins on a proteome level remains elusive. In order to gain a deep insight into the proteins responding to nitrogen stress in rapeseed (Brassica napus L.), comparative proteomic analysis was performed to investigate changes of protein expression profiles from the root, stem and leaf under different N concentrations, respectively. More than 200 differential abundance proteins (DAPs) were detected and categorized into groups according to annotations, including… More >

  • Open Access

    REVIEW

    The role of 5′-adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle atrophy

    KAI DANG, HAFIZ MUHAMMAD UMER FAROOQ, YUAN GAO, XIAONI DENG, AIRONG QIAN*

    BIOCELL, Vol.47, No.2, pp. 269-281, 2023, DOI:10.32604/biocell.2023.023766

    Abstract As a key coordinator of metabolism, AMP-activated protein kinase (AMPK) is vitally involved in skeletal muscle maintenance. AMPK exerts its cellular effects through its function as a serine/threonine protein kinase by regulating many downstream targets and plays important roles in the development and growth of skeletal muscle. AMPK is activated by phosphorylation and exerts its function as a kinase in many processes, including synthesis and degradation of proteins, mitochondrial biogenesis, glucose uptake, and fatty acid and cholesterol metabolism. Skeletal muscle atrophy is a result of various diseases or disorders and is characterized by a decrease in muscle mass. The pathogenesis… More >

  • Open Access

    ARTICLE

    GABPB1-AS1 acts as a tumor suppressor and inhibits non-small cell lung cancer progression by targeting miRNA-566/F-box protein 47

    HUALIANG LV1,#,*, CHANGCHUN LAI2,#, WENQU ZHAO3, YIBO SONG1

    Oncology Research, Vol.29, No.6, pp. 401-409, 2021, DOI:10.32604/or.2022.025262

    Abstract It has been certified that GABPB1-AS1 is aberrantly expressed and plays as a vital role in some kinds of cancers. However, its expression pattern and functions in non-small cell lung cancer (NSCLC) are still largely unknown. This study aims to assess GABPB1-AS1 expression and biological roles in NSCLC. The expression of GABPB1-AS1 was detected in NSCLC specimens and adjacent normal specimens. CCK8 and Transwell assays were performed to evaluate the effects of GABPB1-AS1 on NSCLC cell proliferation, migration and invasion. Bioinformatics tools and luciferase reporter assays were applied to predict and verify GABPB1-AS1’s direct targets. The results revealed that GABPB1-AS1… More >

  • Open Access

    ARTICLE

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

    Qianyu Zhang1,2, Antonio Pizzi3, Hong Lei1,2,*, Xuedong Xi1,2,*, Ming Cao1,2, Long Cao1,2

    Journal of Renewable Materials, Vol.11, No.3, pp. 1439-1450, 2023, DOI:10.32604/jrm.2022.023535

    Abstract Soy protein adhesives are currently a hot research topic in the wood panels industry for the abundant raw material reserves, reasonable price and outstanding environmental features. But their poor water resistance, low bonding strength and intolerance to mold are major drawbacks, so that proper modification before use is essential. Glutaraldehyde is one of the more apt cross-linking agents for soybean protein adhesives, which can effectively improve the bonding strength and water resistance of the adhesive. Equally, glutaraldehyde is also an efficient and broad-spectrum fungicide that can significantly improve the anti-fungal properties of a soy protein adhesive. In the work presented… More > Graphic Abstract

    MALDI ToF Investigation of the Reaction of Soy Protein Isolate with Glutaraldehyde for Wood Adhesives

  • Open Access

    ARTICLE

    Genome Wide Characterization of CBL-CIPK Family Genes and Their Responsive Expression in Rosa chinensis

    Lunzeng Huang1,2,#, Hongsheng Gao1,#, Ning Jiang1,2, Yunhong Xu1,2, Zijian Gong1,2, Lele Chen1,2, Shijie Xue1,2, Xiaoyan Li1, Ruichao Liu1,2, Bei Li1, Hongxia Zhang1, Chunyan Yu1,*, Xiaotong Guo1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 349-368, 2023, DOI:10.32604/phyton.2022.025467

    Abstract Calcium (Ca2+) plays a pivotal role in various signal transduction pathways. Calcineurin B-like proteins (CBLs) are a unique group of Ca2+ sensors that decode Ca2+ signals by activating the plant specific protein kinase known as the CBL-interacting protein kinase (CIPK). In plants, the CBL-CIPK signaling network regulates multiple signals in response to different extracellular cues including abiotic stress. However, the genome wide annotation and expression patterns of CBLs and CIPKs in woody cutting flower plants are still unclear. In this study, a total number of 7 CBLs (RcCBLs) and 17 CIPKs (RcCIPKs) genes, divided into four and five subfamilies, respectively,… More >

  • Open Access

    ARTICLE

    Chickpea C2H2-Type Zinc Finger Protein ZF2 is a Positive Regulator in Drought Response in Arabidopsis

    Sushuang Liu1,2,#, Yanmin Liu1,2,#, Chundong Liu1, Xingwang Yu2,3, Hao Ma2,4,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.2, pp. 577-590, 2023, DOI:10.32604/phyton.2022.023738

    Abstract Drought is a major abiotic stress limiting agricultural crops production worldwide. In our study, we isolated a novel C2H2-type zinc finger protein gene ZF2 from chickpea. ZF2 consisted of 232 amino acids with two QALGGH motifs in Cys2/His2 zinc finger domain. Transient expression analysis of ZF2:GFP fusion protein showed that ZF2 was a nuclear localized protein. In the yeast assay system, the full-length of ZF2 did not show transcriptional activation. Expression of ZF2 gene was enhanced by treatments of several abiotic stresses and phytohormones. The promoter region of ZF2 contained multiple stress- and hormone-related cis-elements. Overexpression of ZF2 in Arabidopsis… More >

Displaying 51-60 on page 6 of 262. Per Page