Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (109)
  • Open Access

    ARTICLE

    Astragaloside IV improves melanocyte differentiation from mouse bone marrow mesenchymal stem cells

    XINGYU MEI, ZHOUWEI WU, CHENGZHONG ZHANG, YUE SUN, WEIMIN SHI*

    BIOCELL, Vol.45, No.6, pp. 1551-1559, 2021, DOI:10.32604/biocell.2021.015376

    Abstract Vitiligo results in an autoimmune disorder destructing skin pigment cells, melanocytes (Mcs). This study aimed to investigate whether Astragaloside IV (AIV) could efficiently induce differentiation of bone marrow mesenchymal stem cells (BMMSCs) into Mcs. BMMSCs were induced and differentiated into Mcs with 0.1, 0.2, and 0.4 mg/L AIV during 150-day. Morphologic changes of differentiated cells were observed. Levels of some melanocytic specific genes (TRP-1, TRP-2, MART-1, Mitf) were measured with quantitative polymerase chain reaction (qPCR) at 90, 120, and 150 days of induction. After 90-day induction, the differentiated cells with 0.4 mg/L AIV demonstrated the typical morphology of Mcs, positive… More >

  • Open Access

    REVIEW

    The signaling pathway in modulating bone metabolism after dental implant in diabetes

    XIAOMEI HAN#, SHUYING ZHANG#, YIFU WANG, CHANGE QI, PENGNYU GUO, YALI XU, GUANGHUI LYU*

    BIOCELL, Vol.45, No.6, pp. 1509-1519, 2021, DOI:10.32604/biocell.2021.09506

    Abstract Diabetes Mellitus is a systematic disease with complications in multi-organs, including decreased implant osseointegration and a high failure rate of dental transplants. Accumulating evidence indicates that the signaling pathway directly impacts the process of bone metabolism and inflammatory response implicated with dental implants in diabetic patients. This review summarizes the recent advance in signaling pathways regulate osseointegration and inflammatory response in dental transplantation, aiming to identify the potential therapeutic target to reduce the dental transplant failure in diabetes patients, with emphasis on the surface characteristics of the implant, inflammatory signaling, AMPK, PPARγ, WNT, ROS, and adiponectin signaling. More >

  • Open Access

    ARTICLE

    Angelica sinensis polysaccharides ameliorate 5-flourouracil-induced bone marrow stromal cell proliferation inhibition via regulating Wnt/β-catenin signaling

    HANXIANZHI XIAO, RONGJIA QI, ZILING WANG, MINGHE XIAO, YUE XIANG, YAPING WANG, LU WANG*

    BIOCELL, Vol.45, No.4, pp. 1045-1058, 2021, DOI:10.32604/biocell.2021.015039

    Abstract Chemotherapy may cause cellular oxidative stress to bone marrow. Oxidative damage of bone marrow hematopoietic microenvironment is closely related to chronic myelosuppression after chemotherapeutic treatment. Angelica sinensis polysaccharides (ASP) are major effective ingredients of traditional Chinese medicine Angelica with multi-target anti-oxidative stress features. In the current study, we investigated the protective roles and mechanisms of ASP on chemotherapy-induced bone marrow stromal cell (BMSC) damage. The human bone marrow stromal cell line HS-5 cells were divided into control group, 5-FU group, 5-FU + ASP group, and 5-FU + LiCl group to investigate the mechanism of ASP to alleviate 5-FU-induced BMSC proliferation… More >

  • Open Access

    ARTICLE

    Wave Propagation Model in a Human Long Poroelastic Bone under Effect of Magnetic Field and Rotation

    A. M. Abd-Alla1,*, Hanaa Abu-Zinadah2, S. M. Abo-Dahab3, J. Bouslimi4,5, M. Omri6

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1485-1504, 2021, DOI:10.32604/cmc.2021.012586

    Abstract This article is aimed at describing the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic cylindrical bone. It offers a solution with an exact closed form. The authors got and examined numerically the general frequency equation for poroelastic bone. Moreover, they calculated the frequencies of poroelastic bone for different values of the magnetic field and rotation. Unlike the results of previous studies, the authors noticed little frequency dispersion in the wet bone. The proposed model will be applicable to wide-range parametric projects of bone mechanical response. Examining the vibration of surface waves in rotating… More >

  • Open Access

    ABSTRACT

    Residual Strength and Microdamage of Cortical Bone After Non-Destructive Creep Loading

    Ei Yamamoto1,*, Yuki Tanifuji2, Masaya Nishimoto2, Yuki Kawamura2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.23, No.1, pp. 17-17, 2021, DOI:10.32604/icces.2021.08434

    Abstract Bone tissue is a viscoelastic material which shows time-dependent mechanical manner. Moreover, it is known that bone microdamage is generated by physiological normal mechanical loading in vivo [1-3]. In order to know basic insight into the adverse effects of creep loading on bone strength, in the present study, we focused on the mechanical behavior of cortical bone after nondestructive creep loading at high stress magnitude. Cylindrical specimens were obtained from cortical bone in the longitudinal and tangential direction of bovine femur. We statically applied a compressive stress to the specimens (creep group) for 24 hours. The specimens without creep loading… More >

  • Open Access

    ARTICLE

    PathVisio Analysis: An Application Targeting the miRNA Network Associated with the p53 Signaling Pathway in Osteosarcoma

    MERVIN BURNETT1, VITO RODOLICO2, FAN SHEN1, ROGER LENG1, MINGYONG ZHANG3, DAVID D. EISENSTAT4,5, CONSOLATO SERGI1,3,6,*

    BIOCELL, Vol.45, No.1, pp. 17-26, 2021, DOI:10.32604/biocell.2021.013973

    Abstract MicroRNAs (miRNAs) are small single-stranded, non-coding RNA molecules involved in the pathogenesis and progression of cancer, including osteosarcoma. We aimed to clarify the pathways involving miRNAs using new bioinformatics tools. We applied WikiPathways and PathVisio, two open-source platforms, to analyze miRNAs in osteosarcoma using miRTar and ONCO.IO as integration tools. We found 1298 records of osteosarcoma papers associated with the word “miRNA”. In osteosarcoma patients with good response to chemotherapy, miR-92a, miR- 99b, miR-193a-5p, and miR-422a expression is increased, while miR-132 is decreased. All identified miRNAs seem to be centered on the TP53 network. This is the first application of… More >

  • Open Access

    REVIEW

    Osteoporosis Prediction for Trabecular Bone using Machine Learning: A Review

    Marrium Anam1, Vasaki a/p Ponnusamy2,*, Muzammil Hussain3, Muhammad Waqas Nadeem2,4, Mazhar Javed3, Hock Guan Goh2, Sadia Qadeer3

    CMC-Computers, Materials & Continua, Vol.67, No.1, pp. 89-105, 2021, DOI:10.32604/cmc.2021.013159

    Abstract Trabecular bone holds the utmost importance due to its significance regarding early bone loss. Diseases like osteoporosis greatly affect the structure of the Trabecular bone which results in different outcomes like high risk of fracture. The objective of this paper is to inspect the characteristics of the Trabecular Bone by using the Magnetic Resonance Imaging (MRI) technique. These characteristics prove to be quite helpful in studying different studies related to Trabecular bone such as osteoporosis. The things that were considered before the selection of the articles for the systematic review were language, research field, and electronic sources. Only those articles… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Bone Remodeling Coupling the Damage Repair Process in Human Proximal Femur

    Chuanyong Qu*, Hui Yuan

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.2, pp. 829-847, 2020, DOI:10.32604/cmes.2020.012407

    Abstract Microdamage is produced in bone tissue under the long-term effects of physiological loading, as well as age, disease and other factors. Bone remodeling can repair microdamage, otherwise this damage will undermine bone quality and even lead to fractures. In this paper, the damage variable was introduced into the remodeling algorithm. The new remodeling algorithm contains a quadratic term that can simulate reduction in bone density after large numbers of loading cycles. The model was applied in conjunction with the 3D finite element method (FEM) to the remodeling of the proximal femur. The results showed that the initial accumulation of fatigue… More >

  • Open Access

    ARTICLE

    Enhanced osteogenic differentiation of human periodontal ligament stem cells by suberoylanilide hydroxamic acid

    YUNZE XUAN1,#, BIN JIN1,#, SAYAN DEB DUTTA5,#, MENGMENG LIU2, ZAIXIAN SHEN1, XIWEN LIU3, YANG KANGJUAN4,*, LIM KI-TAEK5,*

    BIOCELL, Vol.44, No.3, pp. 389-400, 2020, DOI:10.32604/biocell.2020.09170

    Abstract Periodontitis is a type of chronic inflammation in the gingival tissue caused by infectious bacteria colonizing the surface of the teeth, leading to the destruction of tooth-supporting tissues and loss of alveolar bone. Suberoylanilide hydroxamic acid (SAHA), a class of histone deacetylase (HDAC) inhibitor, has the potential to stimulate osteoblast differentiation by acetylating histone proteins, and thus suppressing the expression of adipogenic and chondrogenic genes. However, the effect of SAHA on the differentiation of human periodontal ligament stem cells (hPDLSCs) is yet to be elucidated. Herein, we investigated the effects of SAHA on in vitro proliferation and differentiation of hPDLSCs… More >

  • Open Access

    REVIEW

    Nanomechanics and Ultrastructure of Bone: A Review

    Mohammad Maghsoudi-Ganjeh, Xiaodu Wang*, Xiaowei Zeng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.125, No.1, pp. 1-32, 2020, DOI:10.32604/cmes.2020.012123

    Abstract In this review, a brief presentation is first given to the hierarchical structure and mechanical behavior of bone. Then, the recent advancements in nanoscale characterization of bone ultrastructure and ingredients are discussed based on an extensive quantity of references in the literature.Moreover, computational and analytical bone mechanics at ultrastructure levels are critically reviewed with the growing body of knowledge in the field. The computational and analytical models are summarized in several categories for ease of understanding bone nanomechanics and their applicability/limitations. This review is expected to provide a well-informed foundation for the researchers interested in interrogating the complex biomechanical response… More >

Displaying 41-50 on page 5 of 109. Per Page