SDHMOpen Access

Structural Durability & Health Monitoring

ISSN:1930-2983(print)
ISSN:1930-2991(online)
Publication Frequency:Bi-monthly

  • Online
    Articles

    323

  • on board
    editors

    94

Special lssues



About the Journal

In order to maintain a reasonable cost for large scale structures such as airframes, offshore structures, nuclear plants etc., it is generally accepted that improved methods for structural integrity and durability assessment are required. Structural Health Monitoring (SDHM) had emerged as an active area of research for fatigue life and damage accumulation prognostics.

This journal is a member of the Committee on PublicationEthics (COPE).

Indexing and Abstracting

Scopus Citescore (Impact per Publication 2022): 3.0; SNIP (Source Normalized Impact per Paper 2022): 0.630; RG Journal Impact (average over last three years); Engineering Index (Compendex); Applied Mechanics Reviews; Cambridge Scientific Abstracts: Aerospace and High Technology, Materials Sciences & Engineering, and Computer & Information Systems Abstracts Database; INSPEC Databases; Mechanics; Science Navigator; Portico, etc...

  • Open Access

    ARTICLE

    Influence of Confined Concrete Models on the Seismic Response of RC Frames

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 197-222, 2024, DOI:10.32604/sdhm.2024.048645
    Abstract In this study, the influence of confined concrete models on the response of reinforced concrete structures is investigated at member and global system levels. The commonly encountered concrete models such as Modified Kent-Park, Saatçioğlu-Razvi, and Mander are considered. Two moment-resisting frames designed according to the pre-modern code are taken into consideration to reflect the example of an RC moment-resisting frame in the current building stock. The building is in an earthquake-prone zone located on Z3 Soil Type. The inelastic response of the building frame is modelled by considering the plastic hinges formed on each beam and column element for different… More >

  • Open Access

    ARTICLE

    Numerical Exploration of Asymmetrical Impact Dynamics: Unveiling Nonlinearities in Collision Problems and Resilience of Reinforced Concrete Structures

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 223-254, 2024, DOI:10.32604/sdhm.2024.044751
    Abstract This study provides a comprehensive analysis of collision and impact problems’ numerical solutions, focusing on geometric, contact, and material nonlinearities, all essential in solving large deformation problems during a collision. The initial discussion revolves around the stress and strain of large deformation during a collision, followed by explanations of the fundamental finite element solution method for addressing such issues. The hourglass mode’s control methods, such as single-point reduced integration and contact-collision algorithms are detailed and implemented within the finite element framework. The paper further investigates the dynamic response and failure modes of Reinforced Concrete (RC) members under asymmetrical impact using… More >

  • Open Access

    ARTICLE

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 255-276, 2024, DOI:10.32604/sdhm.2024.047776
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract Chloride (Cl) ion erosion effects can seriously impact the safety and service life of marine liquefied natural gas (LNG) storage tanks and other polar offshore structures. This study investigates the impact of different low-temperature cycles (20°C, –80°C, and −160°C) and concrete specimen crack widths (0, 0.3, and 0.6 mm) on the Cl ion diffusion performance through rapid erosion tests conducted on pre-cracked concrete. The results show that the minimum temperature and crack width of freeze-thaw cycles enhance the erosive effect of chloride ions. The Cl ion concentration and growth rate increased with the increasing crack width. Based on the experimental… More >

    Graphic Abstract

    Coupling Effect of Cryogenic Freeze-Thaw Cycles and Chloride Ion Erosion Effect in Pre-Cracked Reinforced Concrete

  • Open Access

    ARTICLE

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 277-297, 2024, DOI:10.32604/sdhm.2024.045023
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract Given the difficulty in accurately evaluating the fatigue performance of large composite wind turbine blades (referred to as blades), this paper takes the main beam structure of the blade with a rectangular cross-section as the simulation object and establishes a composite laminate rectangular beam structure that simultaneously includes the flange, web, and adhesive layer, referred to as the blade main beam sub-structure specimen, through the definition of blade sub-structures. This paper examines the progressive damage evolution law of the composite laminate rectangular beam utilizing an improved 3D Hashin failure criterion, cohesive zone model, B-K failure criterion, and computer simulation technology.… More >

    Graphic Abstract

    Research on Fatigue Damage Behavior of Main Beam Sub-Structure of Composite Wind Turbine Blade

  • Open Access

    ARTICLE

    A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 299-320, 2024, DOI:10.32604/sdhm.2024.047850
    (This article belongs to the Special Issue: Sensing Data Based Structural Health Monitoring in Engineering)
    Abstract This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shear concentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-type penetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which contain straight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars were designed and fabricated, and push-out tests of these eight test specimens were carried out to investigate and compare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL specimens were established and validated… More >

  • Open Access

    ARTICLE

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 321-339, 2024, DOI:10.32604/sdhm.2024.045831
    (This article belongs to the Special Issue: Sensing Data Based Structural Health Monitoring in Engineering)
    Abstract Bleachers play a crucial role in practical engineering applications, and any damage incurred during their operation poses a significant threat to the safety of both life and property. Consequently, it becomes imperative to conduct damage diagnosis and health monitoring of bleachers. The intricate structure of bleachers, the varied types of potential damage, and the presence of similar vibration data in adjacent locations make it challenging to achieve satisfactory diagnosis accuracy through traditional time-frequency analysis methods. Furthermore, field environmental noise can adversely impact the accuracy of bleacher damage diagnosis. To enhance the accuracy and anti-noise capabilities of bleacher damage diagnosis, this… More >

    Graphic Abstract

    Damage Diagnosis of Bleacher Based on an Enhanced Convolutional Neural Network with Training Interference

  • Open Access

    ARTICLE

    Shield Excavation Analysis: Ground Settlement & Mechanical Responses in Complex Strata

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 341-360, 2024, DOI:10.32604/sdhm.2024.047405
    (This article belongs to the Special Issue: Health Monitoring and Rapid Evaluation of Infrastructures)
    Abstract This study delves into the effects of shield tunneling in complex coastal strata, focusing on how this construction method impacts surface settlement, the mechanical properties of adjacent rock, and the deformation of tunnel segments. It investigates the impact of shield construction on surface settlement, mechanical characteristics of nearby rock, and segment deformation in complex coastal strata susceptible to construction disturbances. Utilizing the Fuzhou Binhai express line as a case study, we developed a comprehensive numerical model using the ABAQUS finite element software. The model incorporates factors such as face force, grouting pressure, jack force, and cutterhead torque. Its accuracy is… More >

  • Open Access

    ARTICLE

    Field Load Test Based SHM System Safety Standard Determination for Rigid Frame Bridge

    Structural Durability & Health Monitoring, Vol.18, No.3, pp. 361-376, 2024, DOI:10.32604/sdhm.2024.048473
    Abstract The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests were conducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. The stiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to 27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessment of the bridge’s safety status by directly using transferred data, a real-time safety warning system is created based on a five-level safety standard. The threshold for each safety level will… More >

Share Link